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Abstract

Real-world systems often encounter new data over time,
which leads to experiencing target domain shifts. Exist-
ing Test-Time Adaptation (TTA) methods tend to apply com-
putationally heavy and memory-intensive backpropagation-
based approaches to handle this. Here, we propose a
novel method that uses a backpropagation-free approach
for TTA for the specific case of 3D data. Our model uses
a two-stream architecture to maintain knowledge about the
source domain as well as complementary target-domain-
specific information. The backpropagation-free property of
our model helps address the well-known forgetting prob-
lem and mitigates the error accumulation issue. The pro-
posed method also eliminates the need for the usually noisy
process of pseudo-labeling and reliance on costly self-
supervised training. Moreover, our method leverages sub-
space learning, effectively reducing the distribution vari-
ance between the two domains. Furthermore, the source-
domain-specific and the target-domain-specific streams are
aligned using a novel entropy-based adaptive fusion strat-
egy. Extensive experiments on popular benchmarks demon-
strate the effectiveness of our method. The code will
be available at https://github.com/abie-e/
BFTT3D.

1. Introduction
In recent years, 3D point cloud processing has experienced
significant growth [32, 33, 47, 51], driven largely by ad-
vances in deep learning techniques. While researchers have
made commendable contributions in these areas, their focus
has predominantly been on controlled environments. A no-
table real-world scenario is Test-Time Adaptation (TTA),
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Figure 1. (a) Baseline. When faced with new point cloud sam-
ples at test time t, most existing methods generate the pseudo-
labels and train the source model in a self-supervised manner. (b)
Backpropagation-free test-time 3D model (BFTT3D). BFTT3D
adopts a backpropagation-free adaptation module to output the
target-specific logit, which fuses with the logit from the source
model for prediction. Compared to the baseline, BFTT3D does
not require any pseudo-labeling process and backpropagation.

which has recently gained substantial attention from re-
searchers [9, 10, 18, 23, 24, 28, 37, 43, 54], owing to its
critical applications in practical settings. In TTA, the model
must rapidly adapt to new test samples during testing to
provide accurate final predictions. For example, consider
a self-driving car equipped with a lidar object detector de-
signed to locate humans and cars on the street. Although
this detector may have been trained exclusively under ideal
weather conditions, it must swiftly adapt to new environ-
ments during test time, such as snowy or rainy weather con-
ditions. This highlights the pressing need to adopt TTA to
ensure the car can adapt swiftly to these dynamic environ-
ments without extensive retraining. In this paper, we en-
deavor to propose an innovative and efficient method for
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TTA on 3D data [11, 27], an area that has received compar-
atively less attention in the literature compared to 2D im-
ages [4, 20, 21, 45]. Nonetheless, from a problem-solving
standpoint, it holds equal significance for the computer vi-
sion community.

In a TTA scenario, the model must swiftly adapt to a new
target domain on the fly, using unlabeled test samples. It
accomplishes this task without direct access to the original
training data, instead relying on a pre-trained model derived
from it. Traditionally, two prominent techniques are em-
ployed to tackle the TTA challenge. In the first category, the
model utilizes a teacher-student architecture [6, 31, 46] to
generate pseudo-labels for given test samples, enabling it to
adjust to a new domain. The model is then updated through
back-propagation using these pseudo-labels. While this
strategy leverages pseudo-labels effectively, relying solely
on them can introduce noisy supervision, leading to the ac-
cumulation of errors from previous test samples and sig-
nificantly hindering performance on subsequent new test
samples. Moreover, it may result in losing valuable knowl-
edge from the source domain during adaptation to a new
one due to the forgetting issue. In the second category, self-
supervised methods [27] are employed to adapt the model to
new domains. Although they perform well, they tend to be
slower, making them less suitable for real-time applications
where rapid adaptation is crucial. In this paper, we intro-
duce a novel approach for 3D test-time learning that over-
comes forgetting and error accumulation issues and allows
for fast adaptation. This makes it a promising choice for ad-
dressing real-world application problems, which is pivotal
in test-time learning.

In this paper, as shown in Figure 1, we introduce a
novel approach, backpropagation-free test-time 3D model
(BFTT3D), for TTA that circumvents the reliance on
pseudo-labels and avoids needing a complex and sluggish
self-supervised learning technique. It operates without ne-
cessitating updates to the model parameters during adapta-
tion, thus sidestepping the issue of error accumulation. To
delve deeper into our proposed method, we leverage an ex-
isting 3D point cloud model [32, 33, 47, 51] as the source
model, meticulously trained on the source data. The source
model crafts a source-domain-specific (or source-specific)
feature description when presented with a test sample from
a target domain. The source model is kept frozen dur-
ing upcoming test samples, which helps us to keep useful
knowledge of the source domain. Concurrently, we gener-
ate a target-domain-specific (or target-specific) description
tailored to the given test samples from the target domain.
Within our designed backpropagation-free adaptation mod-
ule, our focus lies in narrowing the domain gap between
the emerging target domain and the established source do-
main within a defined subspace, effectively minimizing the
distribution divergence between the two. Notably, our dy-

namic domain adaptation methods enable seamless adjust-
ment to forthcoming test samples from the target domain,
rendering them highly versatile in TTA scenarios. In the
final stage, we integrate the information from both source-
specific and target-specific information, leveraging the en-
tropy data from both models during adaptation. Our pro-
posed solution is highly adaptive as it can grow with the
data, accommodating new information without requiring
updates to predefined parameters (avoiding the computa-
tional cost of backpropagation), and well-suited for scenar-
ios where data is constantly changing or expanding.

In summary, the main contributions of our paper are as
follows:
• We present a novel and efficient approach, BFTT3D, for

3D TTA, eliminating the necessity for extensive back-
propagation. This approach is less susceptible to the im-
pact of noisy supervision derived from pseudo-labels and
does not entail parameter fine-tuning during adaptation,
consequently sidestepping error accumulation and forget-
ting issues.

• The backpropagation-free adaptation is proposed along
with the source model to enhance the model’s adaptabil-
ity to specific domains. It is introduced without adding
the extra model parameters that need backpropagation.

• Using entropy information, we fuse the source-specific
feature from the source model and the target-specific fea-
ture from the backpropagation-free adaptation. Like the
backpropagation-free adaptation module, the fusion mod-
ule does not introduce extra model parameters that need
backpropagation.

• The experimental outcomes demonstrate the superiority
of the proposed BFTT3D on popular benchmarks, includ-
ing including ModelNet-40C [42] and ScanObjectNN-
C [27]. The algorithm is validated to be effective and
efficient in 3D TTA.

2. Related work
Point cloud domain adaptation: In recent years, 3D sen-
sors have become integral components of perception sys-
tems. The field of 3D point cloud processing has expe-
rienced remarkable growth, primarily fueled by advance-
ments in deep learning techniques [16, 19, 32, 33, 47, 51].
Unsupervised domain adaptation (UDA) is increasingly
prominent in the 3D vision for mitigating domain gaps be-
tween source and target datasets without target label in-
formation. UDA methods can be categorized into two
groups. The first group requires labeled source data and
source-trained models for adaptation to the target domain,
while the second group employs source-free domain adap-
tation approaches. Wang et al. [48] introduce a statistic
normalization approach to handle the gaps. Many of the
following works leverage self-training to resolve the do-
main adaptation problem. These methods make improve-
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ments mainly on obtaining pseudo labels of higher qual-
ity e.g. with a memory bank (ST3D) [53] or by harness-
ing scene flow information (FAST3D) [8]. Some works
suggested multi-level self-supervised learning at global and
local scales [7]. Recently, Cardace et al. [3] introduced
a point cloud-specific self-training strategy with pseudo
label refinement that exploits self-distillation to learn ef-
fective representations. In addition to the self-training
approaches, other approaches concentrate on establishing
alignment between the source and target domains. Domain
alignments are established through various strategies, in-
cluding a multi-level alignment of local and global features
(PointDAN) [34], a scale-aware and range-aware alignment
strategy (SRDAN) [57], a student-teacher network along
with pseudo-labeling (MLC-Net) [26], and a contrastive
co-training scheme (3D-CoCo) [55]. Shen et al. [38] in-
troduced geometry-aware implicit in point clouds to miti-
gate domain biases and adopted a pseudo-labeling approach
as part of their two-step method. CoSMix [35, 36] ad-
dresses domain shift in point cloud data through a composi-
tional semantic mixup strategy with a teacher-student learn-
ing scheme. Traditional UDA face limitations in scenarios
where data privacy and data portability are critical. To ad-
dress these constraints, source-free approaches facilitate do-
main adaptation exclusively using a source-trained model,
eliminating the need for source domain labels [17]. Hegde
and Patel [13] utilize a transformer module to calculate an
attentive class prototype, pinpointing accurate regions of
interest for self-training. UAMT [14] introduces a mean
teacher approach with Monte-Carlo dropout uncertainty for
supervising the student model using iteratively generated
pseudo labels. In their subsequent work [15], the same
authors propose an uncertainty-aware mean teacher frame-
work that enhances conventional pseudo-label based on
self-training methods by reducing the impact of label noise
and assigning lower weights to samples when the teacher
model is uncertain. While UDA and SFDA approaches
address critical challenges, they assume prior knowledge
about test data distributions.

Test-time domain adaptation: Test-time adaptation (TTA)
is in contrast to traditional unsupervised domain adaptation,
as it adapts a source-trained model for a new target domain
during inference without using source data. A common
method to minimize the domain difference when source
data is unavailable is fine-tuning the source model using
an unsupervised loss function derived from the target dis-
tribution. TTT [43] updates model parameters in an on-
line manner by applying a self-supervised proxy task on
the test data. TENT [45] updates trainable batch normal-
ization parameters at test time by minimizing the entropy
of model prediction. SHOT [21] also minimizes the ex-
pected prediction entropy derived from the output softmax
distribution. SHOT++ [22] employs target-specific cluster-

ing for denoising pseudo labels. A gradient-free TTT ap-
proach by Boudiaf et al. [2] emphasizes output prediction
consistency while incorporating Laplacian regularization.
TTT++ [24] introduces an extra self-supervised branch us-
ing contrastive learning in the source model to facilitate
adaptation in the target domain. TTT-MAE [9], an exten-
sion of TTT that utilizes a transformer backbone and re-
places the self-supervision with masked autoencoders. Ada-
Contrast [4] employs contrastive learning into TTA and uti-
lizes both pseudo-label loss and diversity loss for optimiza-
tion. Finally, TTTFlow [29] employs unsupervised normal-
izing flows as an alternative to self-supervision for the aux-
iliary task.
Test-time point cloud domain adaptation: While the TTA
concept, originally designed for 2D image data, may en-
counter performance challenges when extended to 3D data,
specialized designs are often required for 3D scenarios.
However, a significant research gap remains in developing
networks that can adapt a pre-trained source model during
testing without requiring access to either source data or tar-
get labels. MM-TTA [39] introduces a selective fusion strat-
egy to ensemble predictions from multiple modalities, en-
hancing self-learning signals in 3D semantic segmentation.
It includes intra- and inter-modules for generating and se-
lecting pseudo-labels.

MATE [27] uses masked autoencoding as a robust self-
supervised auxiliary objective to improve the network’s re-
silience to distribution shifts in 3D point clouds. DSS [49]
is a method that addresses noisy pseudo-labels in TDA
by proposing dynamic thresholding, positive learning, and
negative learning processes. It demonstrates versatility for
3D point cloud classification by monitoring prediction con-
fidence online and selecting low- and high-quality samples
for training. Hatem et al. [12] proposes a test-time adap-
tation approach for point cloud upsampling using meta-
learning to enhance model generalization at inference time.
Point-TTA [11] proposes a test-time adaptation approach
for point cloud registration. The approach adapts the model
parameters in an instance-specific manner during inference
and obtains a different set of network parameters for each
instance.

3. Method

3.1. Problem Formulation

In the context of Test-time Adaptation (TTA), we define two
domains: the source domain denoted as Qs and the target
domain denoted asQt. We assume the existence of a model,
hθs(.), representing the source model, where θs represents
the pre-trained parameters on the source data of Qs. In the
context of the 3D TTA task, the primary objective is for the
source model hθs(.) to accurately predict the point cloud
sample xt from the target domain Qt during the test phase.
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Figure 2. The framework of backpropagation-free test-time 3D model (BFTT3D). In the preparation stage, we first extract general features
for source point cloud data xs using a non-parametric network and then select a subset of all general features as static prototype memory
M. At test time, BFTT3D again adopts the non-parametric network to extract the general feature representation ft from the given test point
cloud sample xt of t domain. The feature ft is then compared with static prototype feature fc ∈ Mc on a shared subspace to compute the
target-specific logit lbf . Finally, the logit lbf supplements the logit produced by the source model, ls, via an adaptive fusion module based
on prediction entropy to output the final logit lt for prediction. Notably, each module of BFTT3D, including the non-parametric network,
subspace learning, and adaptive fusion, does not introduce any parameters that need backpropagation during adaptation.

To achieve this, the model undergoes adaptation to samples
xt from Qt at test time. After this adaptation process, the
updated model predicts the class label of xt. It is important
to emphasize that, for reasons such as privacy or memory
limitations, we do not have access to the source dataset Qs

during test time. In this paper, following [5], we utilize
a limited set of prototype feature representations from the
source domain.

3.2. Model Overview

We provide a concise overview of our proposed method,
BFTT3D, illustrated in Figure 2. Given test point cloud
samples, {xt,1,xt,2, ...,xt,nt

} from domain Qt, our goal
is to predict class labels for these samples. The designed
BFTT3D first extracts information using a non-parametric
network that typically remains unaffected by domain bias,
and thus it produces powerful target-specific features for the
test 3D samples, {ft,1, ft,2, ..., ft,nt

}. These features will be
compared with static prototypes in a shared subspace, and
then the target-specific logit, lbf,t, will be computed. At
last, lbf,t complements the logit generated from the source
model, ls,t, via an adaptive fusion module to output the fi-
nal logit, lt, for prediction. It should be noted that mod-
ules we design along with the source model, including non-

parametric network, subspace learning, and adaptive fusion,
do not require any parameters that need backpropagation.

3.3. Backpropagation-free Adaptation

To better adapt the model to diverse domain distributions,
we complement the source model logit ls,t during test time
of Qt. To achieve this, we generate the logit lbf,t from the
backpropagation-free adaptation module. In particular, the
non-parametric network transforms the incoming test 3D
data xt into the target-specific feature ft. Then, the target-
specific logit lbf,t is calculated based on ft and the static
prototype feature fc in a common subspace.

3.3.1 Non-parametric Network

Non-parametric point cloud network [56] does not require
training and is constructed solely from non-learnable com-
ponents, including farthest point sampling (FPS), k-nearest
neighbors (k-NN), and pooling operations, supplemented
by trigonometric functions. It has been demonstrated that
the non-parametric network has a strong generalization abil-
ity from seen to unseen 3D data due to its training-free man-
ner [56]. Given an input point cloud, xt,i from Qt, trigono-
metric functions first encode the sample into the channel
embedding with size d for X, Y, and Z coordinates. For each
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channel s ∈ {X,Y,Z} , the channel embedding is computed
as follows:

g(xt,i)
(s) =

{
sin(αx(s)

t,i /β
6i
d ), i = 2k

cos(αx(s)
t,i /β

6i
d ), i = 2k + 1

∈ Rd/3 (1)

where α and β represent the wavelength and scale hyper-
parameters. The raw point embedding fraw,t,i is then cal-
culated by the concatenated channel-wise embeddings from
XYZ coordinates as follows:

fraw,t,i = [g(xt,i)
(X), g(xt,i)

(Y), g(xt,i)
(Z)] ∈ Rd (2)

Given each point x, we can obtain the embedding fraw.
FPS is used to find the down-sampled local center points
xcen from all x, and k-NN is then applied to group Nct

neighbor points xnb for each center point xcen. To incor-
porate both center and neighbor information, we first cal-
culate the expanded center feature f̄cen for xcen by simply
concatenating with neighboring point features:

f̄cen = Concat(fcen, fnb,j), j ∈ Ncen (3)

where fcen is the feature of point xcen (See Eq. (2)), and fnb
denotes the feature of the neighbor point xnb. To show the
spatial distribution of neighboring points xnb, the feature
f̄cen is further reweighted by its relative position encoding
g(∆nb) to the center point:

f̄wcen = (f̄cen + g(∆nb))⊙ g(∆nb) (4)

where ⊙ represents element-wise multiplication and ∆nb is
the relative position of xnb to its center point xcen. Finally,
the maximum pooling and average pooling are used to con-
dense the information of f̄wcen:

f̄pcen = MaxPool(f̄wcen) + AvgPool(f̄wcen) (5)

The process from Eq. (3) to (5) will be repeated four
times. After the repetition is completed, a global pooling
operation is applied to get the sample feature ft,i ∈ Rd for
xt,i, which is shown in Figure 2.

3.3.2 Subspace Learning

Prototype memory. Before test time, we use the non-
parametric network to extract features from the source data
xs and save them in the static memory. To predict the
logit, the non-parametric network uses similarity match-
ing instead of the typical classification head. Hence, static
memory should be employed to gather necessary category
information from the source domain for achieving similar-
ity matching [56].

To be resource-efficient regarding memory usage, we
employ the herding algorithm introduced by [40] combined
with a nearest-mean-selection technique to select a subset

from all features, ensuring that we only conserve limited
memory space. We denote the whole feature set without
selection for each class c asMc,all, and the selected exem-
plars set asMc. During the selection, for ∀f ∈Mc,

dist
(
f , f̄c

)
≤ min

f ′∈Mc,all\Mc

dist
(
f̄c, f

′) (6)

where f̄c denotes mean averaged feature in Mc,all.
dist(. , . ) is the distance function between two features. The
selected features fc ∈ Mc are then stored in a fixed proto-
type memory.

The feature ft from the non-parametric network and fc
from the prototype memoryMc share the same dimension.
To make a prediction, we construct the similarity matrix J
between the feature vector Ft = [ft,1, ft,2, ..., ft,nt ] and the
source prototype memoryM = [M1,M2, ...,Mc] via co-
sine similarity:

J = F̃t · M̃T (7)

where F̃t and M̃ denote the corresponding normalized vec-
tors of Ft and static memoryM. Given the source memory
label Lm, we compute the output logit lbf,t via:

lbf,t = φ(JLm) (8)

where φ(x) = exp(−γ(1 − x)) serves as an activation for
prediction and γ is a scaling hyperparameter. In this man-
ner, the source prototypes contribute to the target-specific
logit lbf,t.
Similarity matrix. Due to the distribution gap between the
source and target domain, making direct predictions by sim-
ilarity matrix J across two domains could be problematic.
As such, before Eq. (7), we would like to have a projec-
tion function ψ that first maps both static prototypes and
test sample features, f ∈ M and ft, into a shared subspace
before calculating the similarity:

f ← f∗ = ψ(f) (9)
ft ← f∗t = ψ(ft)

Using the projection function ψ(.), we aim to minimize the
domain divergence between the prototype and test features
within the shared subspace after mapping. Here, we use
the Maximum Mean Discrepancy (MMD) distance [1] to
measure the statistical difference between the prototype and
test domain. This kernel-based measure is distribution-free
and can be applied without imposing strict requirements on
the distribution.

Dist (Qs,Qt) =
∥∥∥ 1
ns

∑ns

i=1 f
∗
i − 1

nt

∑nt

i=1 f
∗
t,i

∥∥∥2
H

(10)

where ns is the number of features f inM, and ∥·∥2H is the
l2 norm computed in a reproducing kernel Hilbert space.

To approximate the mapping function ψ(.) in prac-
tice, which can mitigate the difference between these static
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source prototypes and test sample features in the common
space, we employ a classical transfer learning technique
named Transfer Component Analysis (TCA) [30]. In gen-
eral, TCA finds a transformation matrix W ∈ R(ns+nt)×m,
as the empirical measurement of mapping function ψ in-
duced by a universal kernel, to project both fs and ft onto a
commonly shared subspace of dimension m. The objective
is to minimize the MMD distance on the mapped subspace
formulated in a kernel learning problem [1]. The source-
target kernel matrix K is formulated as follows, reflecting
data similarities in the source, target, and across domains.

K = ⟨ψ (xi) , ψ (xj)⟩ns+nt

i,j=1 ∈ R(ns+nt)×(ns+nt) (11)

Li,j =


1
n2
t

if xi,xj ∈ Qt

1
ns
t

if xi,xj ∈ Qs

−1
nsnt

otherwise

, (12)

where ⟨·⟩ denotes the dot product in H, and L is used to
scale the kernel matrix K. The overall kernel learning ob-
jective for MMD distance can be rewritten as follows, ac-
cording to Eq. (10):

min
W∈R(ns+nt)×m

tr
(
WTKLKW

)
+ µ tr

(
WTW

)
,

s.t. WTKHKW = I
(13)

where µ represents the regularization penalty to control
the complexity of W and H = I − 11T / (ns + nt) ∈
R(ns+nt)×(ns+nt) is the centering matrix. By solving this
constrained trace optimization problem with regularization,
the solution of W is explicitly given by them largest eigen-
vectors of

(KLK+ µI)−1KHK. (14)

Once W is obtained, the transformed source prototype and
target-specific feature vectors, f∗ and f∗t in Eq. (9), are the
corresponding indexed columns of WTK ∈ Rm×(ns+nt).

3.4. Adaptive Fusion Module

After obtaining the target-specific logit lbf,t from the
backpropagation-free adaptation, as shown in Figure 2, we
then fuse lbf,t and the source-specific logit ls,t from the
source model, into a final logit lt. The distribution distance
between the source and target domain varies since the target
domain is diverse. As such, to tackle the varying distribu-
tion gaps, we adaptively fuse ls,t and lbf,t for a more accu-
rate prediction. When the incoming test point cloud samples
are drawn from a target domain whose distribution is similar
to the source data, we hope to emphasize a larger proportion
of the logit from the source model branch since it is reliable
in predicting in-distribution test samples. Conversely, when
the domain sample is drawn from a significantly different
distribution than the source domain, we prioritize using a

larger proportion of the logit from the backpropagation-free
adaptation to provide more target-specific information. To
achieve this, we first adopt a weight p to control the propor-
tion of the logit used in the final prediction.

lt = p · lbf,t + (1− p) · ls,t (15)

To dynamically calculate the value of p in the test time, we
employ the softmax entropy of logits as the measurement to
give p since entropy is related to the errors and shifts [45].
Intuitively, entropy is related to the model’s certainty about
the test point cloud samples, as low-entropy predictions are
most likely correct with high confidence. Thus, we calcu-
late the entropy ratio between two logits as follows to reflect
the degree of the difference between the current target and
source domain:

p = 1− E(lbf,t)
E(ls,t) + E(lbf,t)

(16)

where E(.) denote the entropy. In this way, we achieve
the adaptive fusion of the logits from the source model and
backpropagation-free adaptation module.

4. Experiments
In this section, we provide extensive experiments to demon-
strate the effectiveness of the proposed BFTT3D model in
TTA for 3D data. We evaluate our method on multiple
3D point cloud datasets, including ModelNet-40C [42] and
ScanObjectNN-C [27].

4.1. Implementation

For the non-parametric network, we follow the implemen-
tations in [56]. Regarding the static prototype memory, we
construct the feature memory only once before adaptation
and keep it fixed throughout the adaptation stage. We selec-
tively choose 25% of the samples as the prototype memory
by herding algorithm, and the transformed feature dimen-
sion m for subspace learning is fixed to 150. Note that the
severity of corruption applied is fixed to the highest 5 for
all test experiments. In addition, we also utilized various
backbones for the source model, each trained independently
on its corresponding clean set, to validate the robustness of
BFTT3D. The number of points for the input point cloud is
set to 1024. We run all experiments on a single NVIDIA
RTX 4080.

4.2. Datasets

ModelNet-40C. ModelNet-40C [42] is a benchmark with
15 common types of corruptions induced on the original
test set of ModelNet-40 [50]. The goal of building the
ModelNet-40C dataset is to mimic distribution shifts that
occur in the real world.
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Method Backbone uniform gaussian background impulse upsampling rbf rbf-inv den-dec dens-inc shear rot cut distort oclsion lidar Mean ↓
Source-only

PointNet [32]

14.63 18.68 95.30 33.39 15.03 29.46 27.63 12.93 10.49 42.71 72.81 14.95 34.85 56.28 59.00 35.88
TENT [45] 14.71 18.35 90.36 27.03 15.36 28.28 26.66 13.86 12.36 40.68 65.68 15.76 33.87 56.56 59.85 34.62
BN [20] 14.83 18.84 89.63 27.47 15.15 28.69 26.66 14.59 12.40 40.44 65.88 16.25 34.68 57.58 60.21 34.89
SHOT [21] 14.91 17.22 90.44 25.61 14.51 27.07 25.85 13.78 12.20 39.95 65.80 16.21 32.98 56.93 60.29 34.25
LAME [2] 76.64 84.67 95.95 95.48 67.83 93.37 91.72 59.92 34.81 96.45 97.50 68.52 92.53 95.99 95.95 83.16
DSS [49] 14.20 18.71 94.13 33.12 14.33 29.31 27.55 13.31 10.92 41.42 66.31 15.45 34.10 56.31 59.33 35.23
BFTT3D (ours) 14.55 18.27 80.75 31.93 14.83 28.97 27.19 12.76 10.49 39.71 68.56 14.67 34.04 54.13 55.88 33.78
Source-only

DGCNN [47]

23.46 28.20 57.41 37.93 33.23 22.73 20.91 27.59 16.57 15.96 41.33 23.78 19.94 65.52 85.25 34.65
TENT [45] 18.92 19.94 61.91 22.85 24.64 21.80 20.87 25.00 18.15 18.76 31.97 23.46 21.72 62.56 72.29 30.99
BN [20] 19.81 20.42 63.01 23.22 25.41 22.41 21.52 26.09 17.54 18.80 32.09 23.10 21.76 63.13 72.12 31.36
SHOT [21] 18.88 19.73 57.13 21.27 22.77 22.29 19.73 24.31 17.59 18.48 31.28 22.12 21.72 62.28 72.97 30.17
BFTT3D (ours) 19.45 20.02 58.51 22.33 24.59 21.96 20.71 24.03 16.49 18.80 31.48 21.64 21.39 56.28 62.24 29.33
Source-only

Curvenet [52]

15.60 17.42 81.24 35.49 12.80 14.22 12.88 20.87 10.90 12.32 29.58 20.38 12.93 62.12 68.35 28.47
TENT [45] 13.94 13.01 56.20 20.06 12.76 13.45 12.72 15.15 10.90 12.32 19.57 16.65 13.70 53.57 55.06 22.60
BN [20] 14.95 14.59 60.66 21.35 13.05 15.07 13.61 17.06 11.43 13.65 21.27 17.75 14.10 55.15 56.77 24.03
SHOT [21] 11.75 11.35 43.01 16.17 10.58 11.30 10.94 11.75 9.44 10.01 16.03 12.28 12.75 55.19 54.28 19.79
BFTT3D (ours) 11.87 12.16 40.68 15.36 10.74 11.51 11.02 11.99 10.01 10.72 16.82 13.74 11.75 50.32 49.88 19.23

Table 1. Experimental results on ModelNet-40C [42]. The classification errors in % are provided.

Method Backbone uniform gaussian background impulse upsampling rbf rbf-inv den-dec dens-inc shear rot cut distort oclsion lidar Mean ↓
Source-only

PointNet [32]

63.17 40.62 87.61 70.57 62.31 60.24 58.52 23.24 22.89 65.23 69.54 26.51 60.59 89.33 89.85 59.35
TENT [45] 61.10 38.55 84.34 69.36 60.24 58.69 57.14 23.24 22.72 63.51 68.16 25.82 59.55 89.50 90.71 58.18
BN [20] 60.76 37.01 83.65 68.16 59.21 58.86 57.14 24.27 23.58 63.34 67.99 25.82 58.18 89.5 90.53 57.87
SHOT [21] 62.20 55.77 88.64 86.57 63.86 70.91 67.13 27.54 25.47 74.01 75.39 28.23 68.33 93.29 95.18 65.63
LAME [2] 60.24 33.31 91.91 70.22 59.71 59.90 54.77 14.53 15.98 55.52 62.90 16.44 58.04 92.73 88.92 55.67
DSS [49] 59.83 34.74 84.81 69.26 58.21 57.13 55.42 21.69 20.11 61.52 65.53 22.45 58.21 88.47 90.53 56.53
BFTT3D (ours) 57.14 39.93 70.05 65.23 55.94 54.56 53.01 21.34 21.51 58.69 68.85 24.10 55.94 85.03 85.54 54.46
Source-only

DGCNN [47]

57.83 49.91 55.94 43.37 53.53 37.01 34.08 24.10 19.62 33.39 38.73 25.13 34.60 92.08 92.08 46.09
TENT [45] 54.73 47.16 55.25 43.89 52.84 36.83 32.53 24.78 20.48 31.50 38.55 23.92 32.53 91.39 91.22 45.17
BN [20] 55.25 47.16 55.42 42.86 52.84 36.32 32.19 24.78 19.45 32.01 38.38 24.61 32.36 91.39 91.57 45.11
SHOT [21] 86.92 67.81 81.93 65.75 86.75 43.20 37.01 30.46 27.19 36.32 46.13 32.53 40.45 91.22 89.33 57.53
BFTT3D (ours) 57.31 41.82 52.32 43.37 53.36 36.83 34.07 22.55 17.73 33.05 38.55 22.20 34.58 85.54 85.37 43.91
Source-only

Curvenet [52]

69.54 52.32 81.93 80.21 67.99 67.13 66.27 35.46 31.15 64.03 69.36 36.32 67.13 90.53 92.25 64.77
TENT [45] 70.22 53.87 81.93 80.21 70.05 68.16 67.81 36.49 32.53 66.09 70.57 36.83 67.99 91.05 92.77 65.77
BN [20] 69.36 50.95 80.21 79.52 68.16 66.95 66.09 34.77 31.33 64.37 67.99 35.63 66.09 90.36 92.08 64.26
SHOT [21] 87.26 77.11 91.91 93.98 87.09 87.78 87.44 72.12 73.84 87.26 87.44 74.18 87.09 95.01 90.71 85.35
BFTT3D (ours) 61.96 48.19 68.85 71.43 60.93 58.00 57.83 30.29 28.23 57.49 62.65 31.50 58.86 88.64 85.54 57.80

Table 2. Experimental results on ScanObjectNN-C [27]. The classification errors in % are provided.

ScanObjectNN-C. ScanObjectNN [44] is a point cloud
classification dataset collected from the real world. It con-
tains 15 classes, with 2309 samples in the train set and 581
in the test set. To build ScanObjectNN-C, we employ the
setting proposed by [27] to generate 15 corruptions in the
test set of ScanObjectNN with the object only.

4.3. Main Results

ModelNet-40C. We first examine the adaptation perfor-
mance on ModelNet-40C, and the experimental results are
given in Table 1. As shown in the table, all baseline
methods, including TENT [45], BN [20], and SHOT [21]
have improvements over the source model. However, our
method, BFTT3D, has the lowest error rate on average.
Interestingly, our approach consistently demonstrates sig-
nificant improvements in domains like occlusion and li-
dar. For example, for the target domain of occlusion,
BFTT3D achieves improvements of 5.02%, 9.24%, and
11.82% over the source model. This observation suggests
that our method is particularly effective when the target and
source domains have a large gap.
ScanObjectNN-C. The experimental result of 3D TTA per-
formance on ScanObjectNN-C [27], a more difficult case,
are reported in Table 2. Notably, the source model exhibits
a high error rate for each backbone, indicating substantial

domain divergence on average and increased difficulty in
adaptation. Baseline methods show limited improvement in
adapting the source model to test the domain. However, our
BFTT3D model can still overcome the large domain gap.
The table shows that our method has 4.89%, 2.18%, and
6.59% less men error compared to the source model, using
PointNet, DGCNN, and Curvenet as the backbone, respec-
tively. This demonstrates that our approach provides useful
target-specific information to the source model, even when
the test target domain distribution differs largely from the
source domain. Another fact is that most baseline meth-
ods face a limitation of insufficient test data for adaptation,
particularly because ScanObjectNN-C has a very limited
number of test samples for each target domain. However,
this constraint does not affect BFTT3D as our method does
not require samples for training the source model. It only
involves concatenating the logits from the frozen source
model and the backpropagation-free adaptation, offering
greater flexibility.

4.4. Ablation Study

Number of prototypes. Here, we explore the influence of
the number of exemplars utilized for constructing the sim-
ilarity matrix. The results in Table 3 indicate that solely
storing 100% of source features for similarity construction
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Method Ratio Mean ↓
Source None 46.09
BFTT3D 100% 43.75
BFTT3D 75% 43.80
BFTT3D 50% 43.91
BFTT3D 25% 43.91

Table 3. Ablation study: number of prototype. The experiments
run on ScanObjectNN-C [27]. The mean classification errors in
% are provided. The ratio reflects the proportion of the prototype
memory relative to the total static memory, indicating the size of
the prototype memory.

Subspace method Mean ↓
None 56.84
JDA [25] 54.87
CORAL [41] 56.80
TCA [30] 54.46

Table 4. Ablation study: subspace learning method. The ex-
periments run on ScanObjectNN-C [27]. Using our BFTT3D
with PointNet backbone, different subspace learning methods are
tested, including JDA, CORAL, and TCA. The mean classification
errors in % are provided.

yields limited benefits compared to using only 25% of the
data. Our setting of 25% not only conserves less memory
space but also reduces the size of the similarity matrix to
improve processing speed.
Subspace learning method. As shown in Table 4, we
present the performance of alternative subspace learning
methods for creating shared subspace of the similarity ma-
trix. The results show that certain subspace learning ap-
proaches for domain alignment, such as TCA [30] and
JDA [25], have relatively low errors compared to other se-
tups. Others like CORAL [41] do not demonstrate effective
improvements in performance. Overall, we note that the
highest error occurs when no subspace learning is applied.
This indicates that transforming onto a shared subspace
before computing the similarity matrix in non-parametric
adaptation is necessary.
Adaptive ratio. In this section, we first evaluate the ef-
fectiveness of the entropy-based ratio from the adaptive fu-
sion module in comparison with fixed thresholds. As seen
from Table 5, simply using p = 0.5 to mix logits from the
target-specific branch and source model helps to reduce the
error compared with the source-only setting. By leveraging
the adaptive ratio, we get the lowest mean error across the
board compared with other setups. This may indicate that
the adaptive ratio reaches a good balance between the two
branches of logits. In addition, we further conducted ex-
periments on ModelNet40-C [42] to compare the adaptive

Method Ratio Mean ↓
Source-only None 46.09
BFTT3D p = 0.5 44.13
BFTT3D adaptive p 43.91

Table 5. Ablation study: adaptive ratio. Using the backbone Cur-
veNet, the experiments run on ScanObjectNN-C [27]. The mean
classification errors in % are provided.

ratio with a best p found by exhaustive search to show the
reliability of our adaptive ratio. Note that from Figure 3, the
error rate of the adaptive threshold is very similar to the er-
ror with the optimal p, staying within a certain small range.
Moreover, it is unlikely for us to manually set an optimal
and reliable threshold without validation. In contrast, our
adaptive ratio provides a good estimated mixing threshold
for test data, and we can calculate this without any valida-
tion in test time.

Figure 3. Comparisons of mean error between adaptive and op-
timal ratio. Using the backbone PointNet [32] and testing on
ModelNet40-C [42]. The blue line represents the optimal p from
an exhaustive search, and the green line represents our adaptive
ratio p.

5. Conclusion

In this work, we propose the model BFTT3D for the task of
3D TTA. In particular, BFTT3D first generates the comple-
mentary target-domain-specific logit via similarity match-
ing on shared subspace. Then, it is combined with the
source-domain-specific model logit via an entropy-based
adaptive fusion strategy to output final refined predictions
for test samples from diverse distributions. The entire
framework of BFTT3D does not introduce any parame-
ters that need backpropagation, thus avoiding the complex
pseudo-labeling process. For future work, meta-training
in the pre-training stage, for the simplicity of our method,
could be a promising direction.
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