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Abstract. In recent years, robust pre-trained foundation models have
been successfully used in many downstream tasks. Here, we would like to
use such powerful models to address the problem of few-shot class incre-
mental learning (FSCIL) tasks on 3D point cloud objects. Our approach
is to reprogram the well-known CLIP-based foundation model (trained
on 2D images and text pairs) for this purpose. The CLIP model works by
ingesting 2D images, so to leverage it in our context, we project the 3D
object point cloud onto 2D image space to create proper depth maps.
For this, prior works consider a fixed and non-trainable set of camera
poses. In contrast, we propose to train the network to find a projection
that best describes the object and is appropriate for extracting 2D im-
age features from the CLIP vision encoder. Directly using the generated
depth map is not suitable for the CLIP model, so we apply the model
reprogramming paradigm to the depth map to augment the foreground
and background to adapt it. This removes the need for modification or
fine-tuning of the foundation model. In the setting we have investigated,
we have limited access to data from novel classes, resulting in a problem
with overfitting. Here, we address this problem via the use of a prompt
engineering approach using multiple GPT-generated text descriptions.
Our method, C3PR, successfully outperforms existing FSCIL methods
on ModelNet, ShapeNet, ScanObjectNN, and CO3D datasets. The code
is available at https://github.com/alichr/C3PR.
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1 Introduction

Maintaining a balance between acquiring new concepts and retaining existing
knowledge presents a significant challenge for machine learning algorithms, a
⋆ denotes equal contribution.
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Fig. 1: (a) Traditional methods using image-based models for point cloud processing
often generate multiple depth maps from fixed camera poses, potentially causing fea-
ture alignment issues and difficulties in recognizing 3D objects from unsuitable camera
angles. (b) In contrast, our proposed approach (C3PR) determines the most suitable
camera pose for projecting a single depth map by leveraging feedback from the founda-
tion model. (c) To improve the foundation model’s performance in handling 3D data
for the FSCIL task, we introduce a novel model reprogramming technique (without
modifying or fine-tuning the foundation model) to further refine the depth map.

task that comes naturally to humans. This task becomes more difficult when
only a few samples are available for new concepts. In the literature, this problem
is referred to as few-shot class incremental learning (FSCIL) [7,9,10,24,37]. Sub-
stantial effort on this topic has been invested, particularly on image data [7,9,10,
24,37], whereas relatively few studies are tailored specifically towards point cloud
data. For example, in the 2D domain, there are vision-language models such as
CLIP [29], ALIGN [17], and FLAVA [33] models with an inherent capacity to
generate highly versatile representations and demonstrate zero-shot capabilities,
all without parameter fine-tuning [20, 25, 42]. Gathering training data for 3D
point clouds is substantially more challenging than for image data, and here we
explore whether the CLIP model can help alleviate this issue. In this paper, we
attempt to leverage CLIP for FSCIL on 3D Point Cloud Objects.

Popular approaches capture 2D images from a fixed set of camera poses and
then pass the images to 2D foundation models for feature extraction [48, 51].
The main drawback of such a strategy is that camera poses are not adaptable
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to the target dataset, hindering capturing the objects in poses ideal for feature
extraction (see Fig. 1 (a)). To address this problem, we propose to learn the
camera projection pose based on the dataset that best describes the 3D objects
(see Fig. 1 (b)). Our proposed model reprogramming approach is advantageous
for representing real-world scanned 3D objects where point cloud data contains
sensor noise (see Fig. 1 (c)). The unique camera pose can still capture the global
shape of noisy 3D objects, even though the object belongs to novel classes. For
language/text modality, many existing works [9–11] leverages vision-language
learning to address the overfitting issue associated with few-shot novel classes.
We argue that vital knowledge lies within the language domain, which may aid
in the training process of the vision domain, particularly for few-shot classes, to
alleviate overfitting. However, thus far, existing methods have only utilized class
names from the language domain [9, 10, 12]. In contrast, we propose a method
based on prompt engineering to better leverage the language domain.

This paper presents a novel approach for extracting valuable insights from
foundational models like CLIP, focusing on FSCIL on 3D point cloud data. As
CLIP’s training data comprises millions of image-text pairs, our target is to
transfer this learned knowledge as a complete black box (without knowing or
modifying pre-trained parameters) for 3D data. To this end, we propose repro-
gramming [38] the CLIP model, specifically for point cloud objects. The proposed
approach is different from prior attempts [48, 51] where they used a fixed set of
camera poses for 3D to 2D image projection and did not augment the input data
for better usage of the CLIP encoder. Our C3PR method emphasizes generat-
ing depth map images with consistent, informative, background pixels, diverging
from conventional model reprogramming techniques that frequently produce ran-
dom pixel information for the background. We observed that maintaining consis-
tent background pixels contributes to improved generalization, particularly for
few-shot novel classes. These steps indirectly add essential perturbation to the
input depth map images so that the black box CLIP vision encoder can operate
without fine-tuning. Furthermore, we propose a novel approach that leverages
information from the language domain using a Large Language Model, GPT,
to combat overfitting issues in few-shot novel classes. Specifically, we generate
multiple descriptive prompts (instead of single class name-based descriptions as
used in [11]) for base and novel classes. It also compensates for the issue with
limited data during novel class learning. The generated prompts are then em-
ployed in the CLIP text encoder, reducing overfitting during incremental train-
ing sessions. Both the vision and text pipelines of our method can be trained
end-to-end. We report state-of-the-art performances when evaluated on 3D syn-
thetic datasets, ModelNet [45] and ShapeNet [6], and two 3D real world-scanned
datasets, ScanObjectNN [40] and Common Objects in 3D (CO3D) [31].

The main contributions of our proposed method are:

– Learning the preferred object-based camera pose for 3D to 2D projections;
– A novel model reprogramming approach for 2D CLIP encoders targeting 3D

point cloud data;
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– Prompt engineering based on a GPT model for novel few-shot classes to
mitigate overfitting.

2 Related work

3D point cloud processing: In recent years, there has been a surge in research
focused on leveraging deep learning for the direct processing of 3D point cloud ob-
jects. Notable contributions include PointNet [27] by Qi et al., which introduced
the use of multi-layer perceptron (MLP) networks for 3D point cloud processing.
However, this approach overlooked the inherent local structures within the input
data. Subsequent techniques were developed to address this limitation, includ-
ing PointNet++ [28], which hierarchically extracts features to take advantage
of local information. Building upon this, several works [21,23,26,30,44,47] have
proposed convolution strategies for extracting local information. PointConv [44]
introduced a novel convolution operation that locates a Monte Carlo estima-
tion of the hidden continuous 3D convolution based on a powerful sampling
technique. SFCNN [30] proposed graph convolution on spherical points. Other
papers [41, 43, 49] treat each point cloud as a graph vertex to learn features in
either spatial or spectral domains. DGCNN [43] constructs a graph in feature
space and dynamically updates it using MLP for each edge, while PointGCN [49]
suggests an approach that generates the graph using k-nearest neighbors from a
point cloud to capture local information.
Few-shot class-incremental learning: Tao et al. [37] were the pioneers in
introducing the FSCIL setting for image data. They proposed the use of a neu-
ral gas network to address the issue of forgetting by preserving the topology of
classes based on their feature vectors. Following this, in [10], a mixture of the
subspaces are generated based on the training data distribution. In a related vein,
Mazumder et al [24] devised a method that selectively adapts a subset of model
parameters for learning novel classes, thereby curbing overfitting. They also com-
bat forgetting by freezing critical parameters in the model. Cheraghian et al. [9]
proposed a novel vision-language strategy, incorporating class semantic informa-
tion from language space using a distillation technique to alleviate the impact of
catastrophic forgetting. They also integrated an attention mechanism to counter
overfitting on few-shot novel tasks. Introduced in [12], the Specific FSCIL tai-
lored for 3D point cloud data presents the innovative concept of Microshape,
which captures essential details from the primary task, effectively addressing
both forgetting and overfitting challenges. Additionally, the work by [35] delves
into cross-domain FSCIL applied to point-cloud recognition. This study dissects
catastrophic forgetting into two distinct components: base class forgetting and
incremental class forgetting, offering separate mitigation strategies.
Model reprogramming: Foundation model reprogramming has recently gained
attention [8], primarily due to its reduced computational and time requirements
compared to the fine-tuning approach. Prior to this, Elsayed et al. [15] intro-
duced adversarial reprogramming. This technique involves mapping ImageNet
labels to task labels, aiming to perplex the ImageNet classifier and induce be-
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havior akin to a CIFAR-10 or MNIST classifier. Dinh et al. [13] proposed that
input reprogramming is more effective in situations with limited labeled data
than training from scratch and fine-tuning. Tsai et al. [39] introduced a technique
called black-box adversarial reprogramming. This method involves transforming
the input and integrating label mapping mechanisms into the output. In this
paper, we present a novel foundation model reprogramming approach tailored
for the CLIP model.

3 Method

In this section, we first introduce the FSCIL problem settings. Let’s consider
a sequence of T tasks denoted by Q = {Q1,Q2, · · · ,QT }, where Yt repre-
sents the set of classes in task Qt, and Yi ∩ Yj = ∅. Additionally, each class
in all tasks is associated with a set of prompt class descriptions generated by an
LLM, e.g ., GPT [4], denoted as Pt. Thus, we can represent each task as a tuple
Qt = {X t

i ,yt
i,pt

i}
nt

i=1, where X t
i = {xt

i,j}lj=1 refers to a 3D point cloud object
with coordinates xt

i,j ∈ R3. Moreover, yt
i ∈ Yt and pt

i ∈ Pt correspond to the
label of the point cloud and its corresponding class prompt description, respec-
tively. In the proposed FSCIL framework, Q1 is the base task (t = 1), where the
model undergoes training on a large-scale synthetic 3D dataset. For t > 1, the
training data are drawn from real-world 3D point clouds consisting of only a few
instances. The model is trained sequentially across the tasks t = 1, . . . , T . How-
ever, during the t-th task, the model is exposed to X t, yt, and {P1,P2, ...,Pt}.
During inference, the model trained on the current task Qt is expected to classify
test samples from both the current and previous tasks, i.e., {Q1,Q2, · · · ,Qt}.

3.1 Model overview

In this section, we present an overview of our proposed methodology, illustrated
in Fig. 2. We begin with a point cloud sample denoted as X t

i , which is passed
through the projection module F . This module utilizes the rotation matrix Rt

i

derived from the transformation module Tr to generate a depth map labelled as
ItDi

. For the projection module F , we use the method proposed by [51], which is
fixed during the training stage. The transformation module Tr is crucial for de-
termining the appropriate angle θ for projection. Additionally, a soft constraint
loss function Lc is applied to the rotation matrix to ensure that the transfor-
mation module generates a valid rotation matrix. Following this, we extract a
binary mask ItMi

from the depth map. Within this mask M , background pixels
are assigned a value of zero, while non-zero depth map values are set to one.
Subsequently, this mask is fed into a model reprogramming module C to add
pixel information to the background of the depth map. To ensure that the gen-
erated embedding does not converge to a noisy image and follows the pattern of
the mask input, an image gradient consistency loss function Lg is used between
the input and output of the module C. The resulting image embedding ItHi

is
then merged with the original depth map in the subsequent stage, resulting in
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Fig. 2: Beginning with a point cloud sample X t
i , we use the projection module F to

generate a depth map ItDi
via the rotation matrix Rt

i from the transformation module
Tr. A mask ItMi

is then extracted from the depth map. This mask is input into module
C and the resulting image is merged with the depth map, yielding the image ItRi

.
Next, ItRi

is input to the CLIP vision encoder model Ve to generate a vision embedding
vt
i ∈ Rm. Simultaneously, X t

i is fed into B to create a point cloud representation
zt
i ∈ Rm. Moreover, the GPT model generates multiple class name descriptions, which

are then stored in a prompt bank. To this end, prompts
{
p1,p2, ...,p|Ytl|

}
for all

old classes and the current task t are forwarded into the text encoder Te, producing
corresponding text embeddings

{
e1, e2, ..., e|Ytl|

}
, where et

i ∈ Rm. Finally, vt
i, zt

i, and
et
j are concatenated and passed through the relation module Rl to generate a scalar

value rti , serving as a similarity score.

the production of a reprogrammed depth map image denoted as ItRi
. After that,

ItRi
is input into the vision encoder of the CLIP model Ve to generate a vision

embedding represented by vt
i ∈ Rm. Simultaneously, the point cloud input X t

i is
forwarded to a 3D point cloud backbone, for instance, Curvenet [46], to generate
a feature description zti ∈ Rm. At the same time, GPT is employed to generate
multiple descriptions for each class using the command: describe a depth map
of a [class], thereby creating several prompts, which are stored in the prompt
bank module. Then, the prompts of all classes

{
pj

}|Ytl|
j=1

, where Ytl =
⋃t

i=1 Yi,
observed up to task t are fed into the text encoder Te to generate the correspond-
ing text embeddings denoted as {ej}|Ytl|

j=1 , where each etj ∈ Rm. The prompts are
generated using LLMs, such as GPT [4], given a command: Describe a depth
map of a [class]. In the subsequent stage, all vt

i, zti, and eti are concatenated and
passed through the relation module [34] Rl to generate a scalar value rti ranging
from 0 to 1. This value serves as a measure of the similarity between the visual
and prompt feature embeddings. Finally, a binary cross-entropy loss function Lr

is used to train the entire proposed pipeline.

3.2 Canonical 3D shape projection

A 3D-to-2D projection matrix can be designed to project any 3D point cloud on
a 2D plane considering any camera angle. Nevertheless, the feature embedding
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Fig. 3: We demonstrate the sensitivity of the CLIP model to the angle of depth map
projection. Here, we consider two random projections to generate depth maps. Addi-
tionally, we assume that there are three classes: car, guitar, and person. Even though
the number of classes is limited to only three, the CLIP model can only correctly clas-
sify two of these depth maps. This highlights the importance of finding the optimum
projection angle to fully leverage the CLIP model for 3D point cloud processing.

produced by the visual encoder of large image-based foundation models (e.g .,
CLIP) can be affected by the content that can be controlled by the projection
angle. Figure 3 shows that an adjustment is pivotal due to the CLIP model’s
sensitivity to the projection angle, especially during depth map processing. We
are interested in finding the optimal projection angle to enhance the performance
of the CLIP model. When projecting from a 3D point cloud to 2D images, we
leverage the mapping function introduced by [51]. We provide optimum projec-
tion angle θ via a rotation matrix R ∈ R3×3, where R = Tr(X ), generated by
the transformation module Tr to ascertain the most effective projection angle
for converting a 3D point cloud into a depth map. The generated R is then
applied to the given 3D point to derive the appropriate angle for the projection
module θ. To ensure that R is a valid rotation matrix, we apply the following
loss function at the output of the transformation module Tr,

Lc =
1

n

n∑
i=1

(∥∥RT
i Ri − I

∥∥2
F +

∣∣det(Ri)− 1
∣∣) (1)

where Ri = Tr(Xi), n is the number of samples in the training set, ∥ · ∥2F
denotes the Frobenius norm, I is the identity matrix. The orthogonality condition∥∥RT

i Ri − I
∥∥2
F

guarantee that the columns of Ri form an orthonormal basis to
preserve distances and angles for rotations.

∣∣det(Ri) − 1
∣∣ affirms that Ri is an

orientation-preserving transformation matrix and doesn’t involve any reflection.
In practice, the Tr matrix may not be guaranteed to be a rotation matrix on

a per-batch basis as the above condition is only a soft constraint. This is over-
come by continuous re-orthogonalization during the training process. Moreover,
alternative methods like euler-angle or quaternion representations could be used.
Nevertheless, the proposed approach of enforcing orthogonality through the Lc

is a known method in the literature [1]. In the end, when provided with a 3D
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point cloud sample Xi, the transformation module Tr computes the desired ro-
tation matrix Ri while taking into account all the aforementioned constraints
to ensure its validity. This process results in the generation of a learned depth
map image, IDi = F (Xi,Ri)

3.3 Model reprogramming

Model reprogramming of computer vision models, especially foundational ones,
is a crucial step in their effective deployment, enabling a seamless transition to
new tasks and domains with minimal adjustments to existing architectures [38].
We present a novel model reprogramming approach specifically tailored for the
CLIP model applied to the FSCIL task on 3D point cloud objects. It is worth not-
ing that the CLIP model is primarily trained on RGB images rather than depth
maps. Therefore, to enhance the CLIP model’s effectiveness with depth maps,
we incorporate pixel information into the background of the depth map images.
More specifically, this modification assists the CLIP model in accurately dis-
cerning the boundary of the depth map shape information through a C module,
which takes the form of a U-Net [32]. To accomplish this, we initially compute
the mask map IMi corresponding to a given depth map IDi , which isolates the
shape boundary from the background. Next, we input IMi into the C module to
extract the pixel information for the background, denoted as IHi

. To ensure the
consistency of the generated pixels in IMi

from the C module and to prevent
convergence to arbitrary values, we employ the following loss function,

Lg =
1

n

n∑
i=1

(
∂IMi

∂x
− ∂IHi

∂x

)2

+

(
∂IMi

∂y
− ∂IHi

∂y

)2

(2)

where ∂
∂x and ∂

∂y denote the derivatives of the images in the x and y direc-
tions, respectively. This loss enforces a smoothness constraint on the gradient to
separate it from foreground objects explicitly.

It helps to learn novel classes with few examples. Subsequently, we combine
the depth map IDi

from the projection module F with the extracted values IHi

from C to generate the final image, IRi
= IDi

⊙C(M(IDi
)), where ⊙ represents

the element-wise multiplication.

3.4 Prompt engineering

Advancements in prompt engineering have unveiled significant potential, pri-
marily driven by LLMs [18, 19]. LLMs can extract richer information from ap-
propriately tailored prompts. With this motivation, we employ GPT to obtain
more insights from plain class names and enhance the FSCIL task on 3D data.
In contrast to prevailing methods [9, 10, 12] that rely solely on the class name
for the FSCIL task, we extend our method by generating additional descriptions
to extract more semantic information from the CLIP text encoder (denoted as
Te). This augmentation ensures a more comprehensive utilization of the LLM’s
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capabilities, thereby enhancing the overall efficacy of our approach. In the FS-
CIL, a significant challenge arises due to the scarcity of training samples for
novel classes, potentially leading to overfitting. To address this issue, we pro-
pose an innovative strategy leveraging the capabilities of LLM, specifically the
GPT model, and utilizing this as novel prompts for the text encoder of the CLIP
model. More precisely, we utilize the GPT model to generate multiple descrip-
tions for each class by providing it with a specific command. These prompts are
formally defined for each sample as follows:

pi = GPT(Commands). (3)

Here, the Commands are structured as Describe a depth of a [class]. For every
class in the dataset, we substitute the respective class names in place of ’[class]’
in the command and input them into GPT-4. This results in the generation
of depth map-specific descriptions with comprehensive category-wise semantics.
Subsequently, we feed the descriptions of each category through CLIP’s textual
encoder Te. Finally, the generated prompts pi are used in the training of the
few-shot classes.

3.5 Class incremental learning

Training. For the base task, denoted as Q1, we conduct training for the trans-
formation model Tr, the 3D backbone B, and the relation module Rl. In the
case of subsequent tasks, denoted as Qt, where t > 1, only the relation mod-
ule undergoes fine-tuning. Throughout both base and subsequent novel tasks, all
other components in our proposed architecture (refer to Figure 2) remain frozen.
Additionally, for each previously learned class, we randomly select a sample to
be stored in a compact memory module M. Given the ith point cloud X t

i of
the tth task, the B module generates the features zti and the Ve module pro-
duces vt

i. Simultaneously, the prompts of all classes for tasks Q1, . . . ,Qt are fed
into the text encoder Te to generate the corresponding text embeddings denoted
as {ej}|Ytl|

j=1 . Then, we concatenate zti, vt
i, and etj and forward them into the

relation module Rl, which provides a score between [0, 1], representing the sim-
ilarity between them. In other words, for each training sample, we generate a
score against each of the classes in both the subsequent and previous tasks as
rtij = γ ◦R ◦ (zti ⊕ vi ⊕ ej), j ∈ Ytl, where Ytl =

⋃t
i=1 Yi, ⊕ is the concatenation

operator, R is the relation module, and γ is the sigmoid function. Finally, for
each feature rij and the corresponding ground truth yi, we employ a binary
cross-entropy cost function to train the model as follows,

Lr = − 1

|Ytl| |S|
∑
k∈Ytl

∑
yi∈S

(
1(yti == k)log(rik) +

(
1− 1(yti == k)

)
log(1− rik)

)
,

where S denotes the set of true labels in the current task, along with the memory
M. Finally, the total loss to train the entire pipeline is as follows,

Lt = λ1Lc + λ2Lg + λ3Lr (4)
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where λ1, λ2, and λ3 are the weighting factors for the constraint loss (Lc),
gradient loss (Lg), and the relation loss (Lr) respectively.
Inference. During the inference process, when given an unlabeled sample X c,
where c ∈ Ytl, the label prediction y∗ is computed using the following equation:

y∗ = argmax
j∈Ytl

(
R ◦ (zc ⊕ vc ⊕ sj)

)
, (5)

where zc and vc represent the calculated features for the sample X c. We use a
standardized prompt for all classes, specifically This is a depth map of a [class].

4 Experiments

Datasets. We employed two synthetic 3D datasets, Modelnet40 [45] and Shape-
net [6], in addition to two real scanned 3D datasets, ScanobjectNN [40] and
CO3D [31]. We follow the setup proposed by [11] for Few-Shot Classification with
Incremental Learning (FSCIL) on point cloud objects. Our proposed method is
assessed in two distinct scenarios. Firstly, we evaluate its performance on the FS-
CIL task within the same dataset, where both the base and novel tasks originate
from identical datasets. Secondly, we subject our method to more demanding
and realistic challenges by testing it in cross-dataset scenarios. In this setting,
the base task involves synthetic datasets, while the novel tasks comprise classes
from real scanned few-shot datasets.
Prompt generation. GPT-4 was employed to produce diverse class descrip-
tions for each class. The following command was utilized: Describe a depth of a
[class]. Approximately 100 class descriptions were generated for each class and
utilized during the training phase.
Implementation details. In our experimentation, we utilize Curvenet as the
backbone for 3D point clouds (B) [46]. The CLIP vision (Ve) and text encoder
(Te) are instantiated using the ViT-B-16 architecture [14]. The C model is con-
structed based on the U-Net architecture [32]. The projection module (F ) follows
the methodology proposed by Zhu et al. [51], and for the transformation module
(Tr), we employ the STN model [16]. Additionally, the relation module comprises
several fully connected layers with sizes (1024, 2048, 1). We use the farthest 1024
points from 3D point cloud objects as input for all samples. For the base task, we
train our proposed method (Figure 2) in an end-to-end manner for 250 epochs
using the Adam optimizer with a learning rate of 0.001. For the novel task, we
fine-tune our model for 200 epochs using the Adam optimizer with a learning
rate of 0.001. It is important to note that we randomly shift and scale points
in the input point cloud during both base and novel class training, with the
additional step of randomly dropping out points. The feature vector dimensions
for B, Te, and Ve are set to 512. Additionally, the weights of the loss functions
λ1, λ2, and λ3 are configured as 0.01, 1, and 1 across the entire datasets. Our
experiments are conducted using the PyTorch framework.
Evaluation metrics. Following the training of each task, we compute the ac-
curacy by consolidating both base and novel classes. Subsequently, following the
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recommendation in [36], we determine the relative accuracy dropping rate, de-
noted as ∆, using the formula ∆ = |accT−acc0|

acc0
×100, where accT and acc0 denote

the accuracy of the last and first tasks, respectively. The value of ∆ serves as a
comprehensive metric for method evaluation. A lower relative accuracy signifies
superior performance.

4.1 Main results

We conducted a comparative analysis of our approach against established meth-
ods in the field, including IL2M [2], ScaIL [3], EEIL [5], LwF [22], FACT [50],
Sem-aware [9], and Microshape [12]. Notably, all these methods are tailored for
image data, with the exception of Microshape [12], which was originally designed
for point cloud data.
Within dataset: In this scenario, both the base and novel tasks are derived
from the same dataset. Roughly half of the classes in the dataset are assigned to
the base task, while the remaining half are incrementally introduced as multiple
novel tasks. It is presumed that these novel tasks encompass only a limited
number of samples for training. Our proposed method has been evaluated on
three datasets—ModelNet, CO3D, and Shapenet. As depicted in Table 1, our
approach demonstrates superior performance across all methods in terms of the
relative accuracy dropping rate, denoted as ∆, indicating the effectiveness of our
proposed method.
Cross dataset: In this arrangement, the base task centers around synthetic
point cloud objects, while the novel few-shot tasks incorporate real-scanned 3D
objects. Notably, the latter often exhibit incompleteness or noise in contrast to
the synthetic data, which typically boast cleanliness and completeness. Conse-
quently, this configuration introduces a more realistic and challenging scenario
compared to within-dataset experiments. Three datasets are considered in this
setting: Shapenet → CO3D, ModelNet40 → ScanObjectNN, and Shapenet →
ScanObjectNN. As illustrated in Table 2, our method outperforms other ap-
proaches in all three setups, underscoring its efficacy in scenarios involving a
domain gap between base and novel tasks.

Table 1: Summary of FSCIL results for within-dataset experiments.
ModelNet

Method 20 25 30 35 40 ∆ ↓
FT 89.8 9.7 4.3 3.3 3.0 96.7

Joint 89.8 88.2 87.0 83.5 80.5 10.4
LwF [22] 89.8 36.0 9.1 3.6 3.1 96.0
IL2M [2] 89.8 65.5 58.4 52.3 53.6 40.3
ScaIL [3] 89.8 66.8 64.5 58.7 56.5 37.1
EEIL [5] 89.8 75.4 67.2 60.1 55.6 38.1

FACT [50] 90.4 81.3 77.1 73.5 65.0 28.1
Sem-aware [9] 91.3 82.2 74.3 70.0 64.7 29.1

Microshape [11] 93.6 83.1 78.2 75.8 67.1 28.3
C3PR (ours) 91.6 82.3 75.8 72.2 70.9 22.5

CO3D
25 30 35 40 45 50 ∆ ↓

76.7 11.2 3.6 3.2 1.8 0.8 99.0
76.7 69.4 64.8 62.7 60.7 59.8 22.0
76.7 14.7 4.7 3.5 2.3 1.0 98.7
76.7 31.5 27.7 18.1 27.1 21.9 71.4
76.7 39.5 34.1 24.1 30.1 27.5 64.1
76.7 61.4 52.4 42.8 39.5 32.8 57.2
77.9 67.1 59.7 54.8 50.2 46.7 40.0
76.8 66.9 59.2 53.6 49.1 42.9 44.1
78.5 67.3 60.1 56.1 51.4 47.2 39.9
81.5 69.4 66.5 63.0 54.2 53.8 34.0

ShapeNet
25 30 35 40 45 50 55 ∆ ↓

87.0 25.7 6.8 1.3 0.9 0.6 0.4 99.5
87.0 85.2 84.3 83.0 82.5 82.2 81.3 6.6
87.0 60.8 33.5 15.9 3.8 3.1 1.8 97.9
87.0 58.6 45.7 40.7 50.1 49.4 49.3 43.3
87.0 56.6 51.8 44.3 50.3 46.3 45.4 47.8
87.0 77.7 73.2 69.3 66.4 65.9 65.8 22.4
87.5 75.3 71.4 69.9 67.5 65.7 62.5 28.6
87.2 74.9 68.1 69.0 68.1 66.9 63.8 26.8
87.6 83.281.579.076.8 73.5 72.6 17.1
88.081.6 77.8 76.7 76.976.274.715.1
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Table 2: Summary of FSCIL results for within-dataset and cross-dataset experiments.
ShapeNet → CO3D

Method 39 44 49 54 59 64 69 74 79 84 89 ∆ ↓
FT 81.0 20.2 2.3 1.7 0.8 1.0 1.0 1.3 0.9 0.5 1.6 98.0

Joint 81.0 79.5 78.3 75.2 75.1 74.8 72.3 71.3 70.0 68.8 67.3 16.9
LwF [22] 81.0 57.4 19.3 2.3 1.0 0.9 0.8 1.3 1.1 0.8 1.9 97.7
IL2M [2] 81.0 45.6 36.8 35.1 31.8 33.3 34.0 31.5 30.6 32.3 30.0 63.0
ScaIL [3] 81.0 50.1 45.7 39.1 39.0 37.9 38.0 36.0 33.7 33.0 35.2 56.5
EEIL [5] 81.0 75.2 69.3 63.2 60.5 57.9 53.0 51.9 51.3 47.8 47.6 41.2

FACT [50] 81.4 76.0 70.3 68.1 65.8 63.5 63.0 60.1 58.2 57.5 55.9 31.3
Sem-aware [9] 80.6 69.5 66.5 62.9 63.2 63.0 61.2 58.3 58.1 57.2 55.2 31.6

Microshape [11] 82.6 77.9 73.9 72.7 67.7 66.2 65.4 63.4 60.6 58.1 57.1 30.9
C3PR (ours) 83.680.077.875.472.872.370.367.964.964.163.224.4

ModelNet → ScanObjectNN
26 30 34 37 ∆ ↓

88.4 6.4 6.0 1.9 97.9
88.4 79.7 74.0 71.2 19.5
88.4 35.8 5.8 2.5 97.2
88.4 58.2 52.9 52.0 41.2
88.4 56.5 55.9 52.9 40.2
88.4 70.2 61.0 56.8 35.7
89.1 72.5 68.3 63.5 28.7
88.5 73.9 67.7 64.2 27.5
89.3 73.2 68.4 65.1 27.1
88.3 75.7 70.6 67.8 23.2

ShapeNet → ScanObjectNN
44 49 54 59 ∆ ↓

81.4 38.7 4.0 0.9 98.9
81.4 82.5 79.8 78.7 3.3
81.4 47.9 14.0 5.9 92.8
81.4 53.2 43.9 45.8 43.7
81.4 49.0 46.7 40.0 50.9
81.4 74.5 69.8 63.4 22.1
82.3 74.6 69.9 66.8 18.8
81.3 70.6 65.2 62.9 22.6
82.5 74.8 71.2 67.1 18.7
84.5 77.8 75.5 71.9 14.9

4.2 Ablation Studies

Evaluating model reprogramming: In the conducted experiment (refer to
Figure 4 (a)), we systematically omitted the model reprogramming module C
and directly fed the depth map image ID into the vision encoder Ve of the CLIP
model. The results clearly illustrate the significance of the model reprogram-
ming in our proposed approach, as evidenced by notable differences between the
outcomes with and without this module.
Impact of the prompt engineering: In our ablation study (see Figure 4
(b)), we investigate the influence of prompt engineering in our methodology.
Specifically, we streamline the training stage by substituting the original multiple
prompts per class with a single fixed prompt. The outcomes underscore the
effectiveness of our GPT-based prompt engineering approach.
Impact of canonical shape projection: Here, we evaluate our proposed
canonical shape projection methodology in comparison to PointCLIPv2 [51],
which generates multiple fixed-depth map projections for each input point cloud.
Specifically, we eliminate the transformation module Tr Subsequently, we adopt
the depth map generation method employed in PointCLIP v2, involving the use
of ten fixed camera pose angles for computing ten depth map images. These im-
ages are then fed into the vision encoder Ve of the CLIP model, and the relation
module is applied to merge the feature vector, mirroring our proposed pipeline.
Notably, our method surpasses PointCLIPv2 by a significant margin (see Fig-
ure 4 (c)), highlighting the efficacy of our learned camera pose angle.
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Fig. 4: This experiment is performed within the Shapenet to ScanobjectNN setting.
In (a), we present the influence of our novel CLIP model reprogramming strategy.
(b) Highlights the impact of prompt engineering as proposed in our method. (c) Our
approach is compared with PointCLIP v2 [51].
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PointCLIP v2 C3PR (ours)

Fig. 5: We visualize the quality of features (from 44 base classes of ShapeNet) generated
by the CLIP vision encoder using (Right) our proposed method, C3PR, and (Left)
PointCLIPv2 [51]. Our method produced a denser cluster than PointCLIP.

Feature quality: In Figure 5, we assess the feature quality produced by the
CLIP vision encoder using our proposed method, C3PR, and compare it with
PointCLIPv2 [51]. As illustrated, our approach yields more discriminative clus-
ters, enhancing overall generalization capabilities.
Influence of Lc and Lg: In Table 3a, we highlight the impact of both Lc and
Lg within our proposed pipeline. It is evident that both loss functions contribute
significantly, but Lc holds greater importance, underscoring the significance of
identifying the learned projection angle for depth map images on image founda-
tion models.
Model reprogramming: Conventional vs. our: In this section, we contrast
our innovative model reprogramming approach with the conventional method
introduced by [15]. Table 3b illustrates the superior effectiveness of our proposed
model reprogramming strategy.

Table 3: Ablation study on the influence of loss (a) and model reprogramming (b).

(a) Influence of Lc and Lg in our approach.

ShapeNet → ScanObjectNN
Method 44 49 54 59 ∆ ↓

Lr 84.4 76.2 70.1 65 22.9
Lr + Lg 84.3 77.3 70.8 66.9 20.6
Lr + Lc 85.7 80.2 74.5 70.8 17.3

Lr + Lg + Lc 84.5 77.8 75.5 71.9 14.9

(b) Comparing our proposed model reprogram-
ming strategy, C3PR, with the conventional model
reprogramming technique employed in [15].

ShapeNet → ScanObjectNN
Method 44 49 54 59 ∆ ↓
[15] 85.7 80.2 74.5 70.8 17.3
C3PR (ours) 84.5 77.8 75.5 71.9 14.9

4.3 Discussion

Point-cloud classification: Although our learning projection module Tr and
model reprogramming module C have demonstrated effectiveness in the FSCIL
context, they can also be applied in the point-cloud classification setting (shown
in the table 4a. However, it is worth to note that our proposed prompt engineer-
ing strategy is specifically tailored to improve performance in FSCIL problems.
Module C role:

The role of Module C is twofold: it learns background information for the
depth maps and smoothens the foreground. Specifically, we combine the depth
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map IDi
from the projection module F with the extracted values ITi

from Mod-
ule C to generate the final image, IRi

= IDi
⊙ C(M(IDi

)), where ⊙ represents
element-wise multiplication. To this end, we conducted experiments to demon-
strate the impact of Module C in our proposed method (see table 4b).

Table 4: Ablation on point-cloud classification (a) and impact of C module (b).

(a) The performance of our proposed method
on point-cloud classification in ModelNet40.

Method Accuracy
DGCNN [43] 92.9
CurveNet [46] 93.8
Ours 94.6

(b) The impact of module C in our proposed
method.

ShapeNet → ScanObjectNN
Method 44 49 54 59 ∆ ↓
Without C 84.5 76.3 73.2 68.9 18.4
With C 84.5 77.8 75.5 71.9 14.9

Limitation: The proposed method exhibits several limitations that warrant dis-
cussion. Firstly, its reliance on storing exemplars in memory, with one sample
per class, and addressing the forgetting issue raises the question of exploring
exemplar-free alternatives, which could offer intriguing avenues for further re-
search. Secondly, our method would perform worse on new concepts from sig-
nificantly different domains, synthetic to real-scan datasets, as can be seen in
Table 2. However, it works well when the new concepts come from similar do-
mains, synthetic to synthetic datasets, as can be seen in Table 1.

5 Conclusion

In this paper, we leverage the CLIP architecture of image-to-text matching to
address the FSCIL problem on 3D point cloud objects. Traditional approaches
usually project a 3D object on a 2D plane to produce images from different
camera angles. Among those 2D images, some have bad/poor camera angles,
making them difficult to recognize. Therefore, we propose a learning mechanism
to find one camera projection that best describes the 3D objects. In doing so,
we adopt a model reprogramming approach that perturbs the input 2D images
(from the best projection angle) with background-foreground colorization (seg-
mentation) without modifying or fine-tuning the original CLIP architectures.
Our reprogramming approach is different from conventional approaches because
our custom loss produces a uniform background color instead of the noisy back-
ground of previous works. In the text pipeline, we use the CLIP text encoder
and train the whole architecture end-to-end. Instead of using a single class name-
based text input, we suggest using prompts based on GPT-based description.
We propose a prompt engineering approach to train the networks with 3D ob-
ject and text description pairs. Finally, we evaluate our proposed method using
3D synthetic datasets, ModelNet and ShapeNet, and two 3D real-world-scanned
datasets, ScanObjectNN and CO3D, and report state-of-the-art performances.
In future, we will investigate model reprogramming for other vision problems
beyond FSCIL, like segmentation and domain adaptation on 3D point clouds.
Acknowledgment. Mehrtash Harandi thanks the Australian Research Council
for support through the Discovery Program (DP230101176).



Canonical Shape Projection for 3D FSCIL 15

References

1. Bansal, N., Chen, X., Wang, Z.: Can we gain more from orthogonal-
ity regularizations in training deep networks? In: Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems. vol. 31. Curran Associates, Inc.
(2018), https://proceedings.neurips.cc/paper_files/paper/2018/file/
bf424cb7b0dea050a42b9739eb261a3a-Paper.pdf

2. Belouadah, E., Popescu, A.: Il2m: Class incremental learning with dual memory.
In: CVPR (2019)

3. Belouadah, E., Popescu, A.: Scail: Classifier weights scaling for class incremental
learning. In: WACV (2020)

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are
few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.
(eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 1877–1901.
Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

5. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: ECCV (2018)

6. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

7. Chen, K., Lee, C.G.: Incremental few-shot learning via vector quantization in deep
embedded space. In: ICLR (2021)

8. Chen, P.Y.: Model reprogramming: Resource-efficient cross-domain machine learn-
ing (2023)

9. Cheraghian, A., Rahman, S., Fang, P., Roy, S.K., Petersson, L., Harandi, M.:
Semantic-aware knowledge distillation for few-shot class-incremental learning. In:
CVPR (2021)

10. Cheraghian, A., Rahman, S., Ramasinghe, S., Fang, P., Simon, C., Petersson, L.,
Harandi, M.: Synthesized feature based few-shot class-incremental learning on a
mixture of subspaces. In: ICCV (2021)

11. Chowdhury, T., Cheraghian, A., Ramasinghe, S., Ahmadi, S., Saberi, M., Rahman,
S.: Few-shot class-incremental learning for 3d point cloud objects. In: Avidan, S.,
Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision –
ECCV 2022. pp. 204–220. Springer Nature Switzerland, Cham (2022)

12. Chowdhury, T., Cheraghian, A., Ramasinghe, S., Ahmadi, S., Saberi, M., Rahman,
S.: Few-shot class-incremental learning for 3d point cloud objects. In: ECCV (2022)

13. Dinh, T., Seo, D., Du, Z., Shang, L., Lee, K.: Improved input reprogramming for
gan conditioning (2022)

14. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. ICLR
(2021)

15. Elsayed, G.F., Goodfellow, I., Sohl-Dickstein, J.: Adversarial reprogramming of
neural networks. In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=Syx_Ss05tm

https://proceedings.neurips.cc/paper_files/paper/2018/file/bf424cb7b0dea050a42b9739eb261a3a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/bf424cb7b0dea050a42b9739eb261a3a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=Syx_Ss05tm


16 A. Cheraghian et al.

16. Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, k.: Spatial transformer
networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 28. Curran Associates,
Inc. (2015), https://proceedings.neurips.cc/paper_files/paper/2015/file/
33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf

17. Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q., Sung,
Y.H., Li, Z., Duerig, T.: Scaling up visual and vision-language representation
learning with noisy text supervision. In: Meila, M., Zhang, T. (eds.) Proceed-
ings of the 38th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 139, pp. 4904–4916. PMLR (18–24 Jul 2021),
https://proceedings.mlr.press/v139/jia21b.html

18. Jia, M., Tang, L., Chen, B.C., Cardie, C., Belongie, S., Hariharan, B., Lim, S.N.: Vi-
sual prompt tuning. In: European Conference on Computer Vision (ECCV) (2022)

19. Lee, D.H., Pujara, J., Sewak, M., White, R.W., Jauhar, S.K.: Making large lan-
guage models better data creators. In: The 2023 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP) (2023), https://openreview.net/
forum?id=2Rdfdri2oT

20. Lee, K.Y., Zhong, Y., Wang, Y.X.: Do pre-trained models benefit equally in contin-
ual learning? In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV). pp. 6485–6493 (January 2023)

21. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on
x-transformed points. In: NeurIPS (2018)

22. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2018)

23. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network
for point cloud analysis. In: CVPR (2019)

24. Mazumder, P., Singh, P., Rai, P.: Few-shot lifelong learning. In: AAAI (2021)
25. Pei, Y., Qing, Z., CEN, J., Wang, X., Zhang, S., Wang, Y., Tang, M., Sang, N.,

Qian, X.: Learning a condensed frame for memory-efficient video class-incremental
learning. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in
Neural Information Processing Systems (2022), https://openreview.net/forum?
id=lCGYC7pXWNQ

26. Poulenard, A., Rakotosaona, M.J., Ponty, Y., Ovsjanikov, M.: Effective rotation-
invariant point cnn with spherical harmonics kernels. In: 3DV (2019)

27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: CVPR (2017)

28. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: NeurIPS (2017)

29. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision. In: Meila, M., Zhang, T. (eds.)
Proceedings of the 38th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 139, pp. 8748–8763. PMLR (18–24 Jul
2021), https://proceedings.mlr.press/v139/radford21a.html

30. Rao, Y., Lu, J., Zhou, J.: Spherical fractal convolutional neural networks for point
cloud recognition. In: CVPR (2019)

31. Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.:
Common objects in 3d: Large-scale learning and evaluation of real-life 3d category
reconstruction. In: ICCV (2021)

https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.mlr.press/v139/jia21b.html
https://openreview.net/forum?id=2Rdfdri2oT
https://openreview.net/forum?id=2Rdfdri2oT
https://openreview.net/forum?id=lCGYC7pXWNQ
https://openreview.net/forum?id=lCGYC7pXWNQ
https://proceedings.mlr.press/v139/radford21a.html


Canonical Shape Projection for 3D FSCIL 17

32. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015. pp. 234–241. Springer International Publishing, Cham (2015)

33. Singh, A., Hu, R., Goswami, V., Couairon, G., Galuba, W., Rohrbach, M., Kiela,
D.: FLAVA: A foundational language and vision alignment model. In: CVPR (2022)

34. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning
to compare: Relation network for few-shot learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2018)

35. Tan, Y., Xiang, X.: Cross-domain few-shot incremental learning for point-cloud
recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV). pp. 2307–2316 (January 2024)

36. Tan, Z., Ding, K., Guo, R., Liu, H.: Graph few-shot class-incremental learning. In:
Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining (2022)

37. Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-
incremental learning. In: CVPR (2020)

38. Tsai, Y.Y., Chen, P.Y., Ho, T.Y.: Transfer learning without knowing: Reprogram-
ming black-box machine learning models with scarce data and limited resources.
In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 9614–
9624. PMLR (13–18 Jul 2020), https://proceedings.mlr.press/v119/tsai20a.
html

39. Tsai, Y.Y., Chen, P.Y., Ho, T.Y.: Transfer learning without knowing: Reprogram-
ming black-box machine learning models with scarce data and limited resources. In:
Proceedings of the 37th International Conference on Machine Learning. ICML’20,
JMLR.org (2020)

40. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, D.T., Yeung, S.K.: Revisiting point
cloud classification: A new benchmark dataset and classification model on real-
world data. In: ICCV (2019)

41. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set
feature learning. In: ECCV (2018)

42. Wang, R., Duan, X., Kang, G., Liu, J., Lin, S., Xu, S., Lü, J., Zhang, B.: Attriclip:
A non-incremental learner for incremental knowledge learning. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 3654–3663 (June 2023)

43. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) (2019)

44. Wu, W., Qi, Z., Fuxin, L.: PointCONV: Deep convolutional networks on 3D point
clouds. In: CVPR (2019)

45. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets:
A deep representation for volumetric shapes. In: CVPR (2015)

46. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: Learning curves
for point clouds shape analysis. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 915–924 (October 2021)

47. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: Spidercnn: Deep learning on point
sets with parameterized convolutional filters. In: ECCV (2018)

48. Zhang, R., Guo, Z., Zhang, W., Li, K., Miao, X., Cui, B., Qiao, Y., Gao, P., Li,
H.: Pointclip: Point cloud understanding by clip. arXiv preprint arXiv:2112.02413
(2021)

https://proceedings.mlr.press/v119/tsai20a.html
https://proceedings.mlr.press/v119/tsai20a.html


18 A. Cheraghian et al.

49. Zhang, Y., Rabbat, M.: A graph-cnn for 3d point cloud classification. In: ICASSP
(2018)

50. Zhou, D.W., Wang, F.Y., Ye, H.J., Ma, L., Pu, S., Zhan, D.C.: Forward compatible
few-shot class-incremental learning. In: CVPR (2022)

51. Zhu, X., Zhang, R., He, B., Guo, Z., Zeng, Z., Qin, Z., Zhang, S., Gao, P.: Pointclip
v2: Prompting clip and gpt for powerful 3d open-world learning. arXiv preprint
arXiv:2211.11682 (2022)


	Canonical Shape Projection is All You Need for 3D Few-shot Class Incremental Learning

