

- A novel model reprogramming approach for 2D CLIP encoders targeting 3D point cloud data;
- Prompt engineering based on a GPT model for novel few-shot classes to mitigate overfitting.

Canonical Shape Projection is All You Need for 3D Few-shot Class Incremental Learning

Ali Cheraghian, Zeeshan Hayder, Sameera Ramasinghe, Shafin Rahman, Javad Jafaryahya, Lars Petersson, Mehrtash Harandi

Our Proposed Method

3D to depth map projection: C3PR learns the optimal camera pose for 3D-to-depth projection using \mathcal{L}_c .

$$\mathcal{L}_{c} = \frac{1}{n} \sum_{i=1}^{n} \left(\left\| \mathbf{R}_{i}^{T} \mathbf{R}_{i} - \mathbf{I} \right\|_{\mathcal{F}}^{2} + \left| \det(\mathbf{R}_{i}) - 1 \right| \right)$$

Model reprogramming: This module is used to further adapt the projected depth for the CLIP using \mathcal{L}_a .

$$\mathcal{L}_g = \frac{1}{n} \sum_{i=1}^n \left(\frac{\partial \mathbf{I}_{M_i}}{\partial x} - \frac{\partial \mathbf{I}_{H_i}}{\partial x} \right)^2 + \left(\frac{\partial \mathbf{I}_{M_i}}{\partial y} - \frac{\partial \mathbf{I}_{H_i}}{\partial y} \right)$$

- **Prompt engineering:** To mitigate overfitting, we used prompt engineering with GPT to generate additional samples for few-shot novel classes.
- Vision-language alignment: The language-vision domains are aligned using a relation model and the corresponding loss \mathcal{L}_a .

$$L_{r} = -\frac{1}{|\mathcal{Y}_{tl}| |S|} \sum_{k \in \mathcal{V}_{tl}} \sum_{\mathbf{v}_{t} \in \mathcal{S}} \left(\mathbf{1}(y_{i}^{t} = k) \log(r_{ik}) + (1 - \mathbf{1}(y_{i}^{t} = k)) \log(1 - r_{ik}) \right)$$

Training: The entire pipeline is trained with,

$$\mathcal{L}_t = \lambda_1 \mathcal{L}_c + \lambda_2 \mathcal{L}_g + \lambda_3 \mathcal{L}_r$$

				•										-							
	ModelNet									CO3I)	ShapeNet									
Method	20	25	30	35	40	$\Delta\downarrow$	25	30	35	40	45	50	$\varDelta \downarrow$	25	30	35	40	45	50	55	$\varDelta \downarrow$
FT	89.8	9.7	4.3	3.3	3.0	96.7	76.7	11.2	3.6	3.2	1.8	0.8	99.0	87.0	25.7	6.8	1.3	0.9	0.6	0.4	99.5
Joint	89.8	88.2	87.0	83.5	80.5	10.4	76.7	69.4	64.8	62.7	60.7	59.8	22.0	87.0	85.2	84.3	83.0	82.5	82.2	81.3	6.6
LwF [22]	89.8	36.0	9.1	3.6	3.1	96.0	76.7	14.7	4.7	3.5	2.3	1.0	98.7	87.0	60.8	33.5	15.9	3.8	3.1	1.8	97.9
IL2M 2	89.8	65.5	58.4	52.3	53.6	40.3	76.7	31.5	27.7	18.1	27.1	21.9	71.4	87.0	58.6	45.7	40.7	50.1	49.4	49.3	43.3
ScaIL $\overline{3}$	89.8	66.8	64.5	58.7	56.5	37.1	76.7	39.5	34.1	24.1	30.1	27.5	64.1	87.0	56.6	51.8	44.3	50.3	46.3	45.4	47.8
EEIL 5	89.8	75.4	67.2	60.1	55.6	38.1	76.7	61.4	52.4	42.8	39.5	32.8	57.2	87.0	77.7	73.2	69.3	66.4	65.9	65.8	22.4
FACT 50	90.4	81.3	77.1	73.5	65.0	28.1	77.9	67.1	59.7	54.8	50.2	46.7	40.0	87.5	75.3	71.4	69.9	67.5	65.7	62.5	28.6
Sem-aware 9	91.3	82.2	74.3	70.0	64.7	29.1	76.8	66.9	59.2	53.6	49.1	42.9	44.1	87.2	74.9	68.1	69.0	68.1	66.9	63.8	26.8
Microshape [11]	93.6	83.1	78.2	75.8	67.1	28.3	78.5	67.3	60.1	56.1	51.4	47.2	39.9	87.6	83.2	81.5	79. 0	76.8	73.5	72.6	17.1
C3PR (ours)	91.6	82.3	75.8	72.2	70.9	22.5	81.5	69.4	66.5	63.0	54.2	53.8	34.0	88.0	81.6	77.8	76.7	76.9	76.2	74.7	'15.1

Summary of FSCIL results for cross-dataset experiments.

	ShapeNet \rightarrow CO3D												elNet	$Net \rightarrow ScanObjectNN$				ShapeNet \rightarrow ScanObjectN			ojectNN
Method	39 44	49	54	59	64	69	74	79	84	89	$\varDelta \downarrow$	26	30	34	37	$\Delta\downarrow$	44	49	54	59	$\Delta\downarrow$
FT	81.0 20.2	2 2.3	1.7	0.8	1.0	1.0	1.3	0.9	0.5	1.6	98.0	88.4	6.4	6.0	1.9	97.9	81.4	38.7	4.0	0.9	98.9
Joint	81.0 79.5	5 78.3	75.2	75.1	74.8	72.3	71.3	70.0	68.8	67.3	16.9	88.4	79.7	74.0	71.2	19.5	81.4	82.5	79.8	78.7	3.3
LwF [22]	81.0 57.4	1 19.3	2.3	1.0	0.9	0.8	1.3	1.1	0.8	1.9	97.7	88.4	35.8	5.8	2.5	97.2	81.4	47.9	14.0	5.9	92.8
IL2M 2	81.0 45.6	5 36.8	35.1	31.8	33.3	34.0	31.5	30.6	32.3	30.0	63.0	88.4	58.2	52.9	52.0	41.2	81.4	53.2	43.9	45.8	43.7
ScaIL 3	81.0 50.1	45.7	39.1	39.0	37.9	38.0	36.0	33.7	33.0	35.2	56.5	88.4	56.5	55.9	52.9	40.2	81.4	49.0	46.7	40.0	50.9
EEIL 5	81.0 75.2	2 69.3	63.2	60.5	57.9	53.0	51.9	51.3	47.8	47.6	41.2	88.4	70.2	61.0	56.8	35.7	81.4	74.5	69.8	63.4	22.1
FACT 50	81.4 76.0) 70.3	68.1	65.8	63.5	63.0	60.1	58.2	57.5	55.9	31.3	89.1	72.5	68.3	63.5	28.7	82.3	74.6	69.9	66.8	18.8
Sem-aware 9	80.6 69.5	566.5	62.9	63.2	63.0	61.2	58.3	58.1	57.2	55.2	31.6	88.5	73.9	67.7	64.2	27.5	81.3	70.6	65.2	62.9	22.6
Microshape [11]	82.6 77.9) 73.9	72.7	67.7	66.2	65.4	63.4	60.6	58.1	57.1	30.9	89.3	73.2	68.4	65.1	27.1	82.5	74.8	71.2	67.1	18.7
C3PR (ours)	83.680.	077.8	875.4	72.8	72.3	70.3	67.9	64.9	64.1	63.2	224.4	88.3	75.7	70.6	67.8	23.2	84.5	77.8	75.5	71.9	14.9

Experiments

Summary of FSCIL results for within-dataset experiments.