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Abstract

We present a novel multimodal dataset developed by expert astronomers to automate
the detection and localisation of multi-component extended radio galaxies and
their corresponding infrared hosts. The dataset comprises 4,155 instances of
galaxies in 2,800 images with both radio and infrared modalities. Each instance
contains information on the extended radio galaxy class, its corresponding bounding
box that encompasses all of its components, pixel-level segmentation mask, and
the position of its corresponding infrared host galaxy. Our dataset is the first
publicly accessible dataset that includes images from a highly sensitive radio
telescope, infrared satellite, and instance-level annotations for their identification.
We benchmark several object detection algorithms on the dataset and propose a
novel multimodal approach to identify radio galaxies and the positions of infrared
hosts simultaneously.

1 Introduction

Recent advancements in radio astronomy have enabled us to scan large areas of the sky in a short
timescale while generating incredibly sensitive continuum images of the Universe. This has created
new possibilities for detecting millions of galaxies at radio wavelengths. For example, the ongoing
Evolutionary Map of the Universe (EMU; Norris et al., 2021) survey, conducted using the Australian
Square Kilometre Array Pathfinder (ASKAP; Hotan et al., 2021) telescope, is projected to discover
more than 40 million compact and extended galaxies in the next five years (Norris et al., 2021; Hotan
et al., 2021). Similarly, the Low-Frequency Array (LOFAR; van Haarlem et al., 2013) survey of the
entire northern sky is also expected to detect more than 10 million galaxies. With the advent of the
Square Kilometre Array (SKA2) radio telescope, which is expected to become operational in the
coming years, the number of galaxy detections is expected to increase further, potentially reaching
hundreds of millions. Such an enormous dataset will significantly impact our understanding of the
physics of galaxy evolution. It will allow us to constrain the theoretical models of the Universe (e.g.

∗nikhel.gupta@csiro.au
2https://www.skatelescope.org/the-ska-project/

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.

ar
X

iv
:2

31
2.

06
72

8v
1 

 [
cs

.C
V

] 
 1

1 
D

ec
 2

02
3



the Big Bang model) at unprecedented levels. To capture the full potential of these radio surveys
comes the need to redesign the galaxy detection techniques.
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Figure 1: Raw radio (left), processed radio (middle) and processed infrared (right) images with the
frame size of 450× 450 pixels (0.25◦ × 0.25◦). The processed radio images highlight the categories
of extended radio galaxies, and the bounding boxes denote their total radio extent encompassing all
of its components. The infrared images show host galaxies inside the circles.

Radio galaxies are characterized by giant radio emission regions that extend well beyond their
structure at visible and infrared wavelengths. While most radio galaxies typically appear as simple,
compact circular sources, increasing the sensitivity of radio telescopes result in the detection of
more radio galaxies with complex extended structures. These structures typically consist of multiple
components with distinct peak radio emissions. Figure 1 displays examples of these extended radio
galaxies in the first (raw noisy data) and second (processed data) columns, along with their compact
infrared host galaxies in the third column. To construct scientifically useful catalogues of radio
galaxies, it is crucial to group the associated components of extended radio galaxies accurately.
Currently, visual inspections are used to cross-identify associated radio source components and their
infrared host galaxies. This limitation highlights the critical need for developing automated methods,
such as machine learning algorithms, to accurately and efficiently cross-identify and group associated
components. However, to train and test such algorithms, a large and diverse dataset of labelled radio
galaxy images is necessary. Unfortunately, such a dataset is not currently available to train models
for the next generation of radio surveys, which poses a significant challenge to developing automated
methods for detecting and grouping components of radio galaxies. This paper introduces a novel
dataset aimed at addressing the problem of radio galaxy component association. The dataset has been
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Table 1: Existing datasets for radio galaxy classification. The annotations C, B, S, and K are
categories, bounding boxes, segmentation and keypoint labels, respectively.

Name #Complex Annot. Radio Image Domain Image Size
Galaxies type noise (µJy/b) experts (pixels)

MiraBest 1,256 C ∼ 140 ✓ 150× 150
Citizen Science RGZ 6,536 C, B ∼ 140 ✗ 132× 132
Present work 2,800 C, B, S, K ∼ 30 ✓ 450× 450

structured in the COCO dataset format (Lin et al., 2014), allowing for straightforward comparison
studies of various object detection strategies for the machine learning community. It features 2,800
3-channel images, each containing two radio sky channels, one corresponding infrared sky channel,
and 4,155 annotations. To summarize, our work contributes to the following aspects:

• We introduce the first publicly available dataset curated by professional astronomers that
includes state-of-the-art images from a highly sensitive radio telescope and instance-level
annotations for extended radio galaxies.

• As a novel addition, our dataset also includes corresponding images of the infrared sky,
along with the positional information of the host galaxies.

• We benchmark the object detection algorithms on our dataset to demonstrate the challenge
of detecting and associating components of radio galaxies. Additionally, we propose a novel
method to detect the positions of infrared host galaxies simultaneously.

2 The Dataset

2.1 Radio and Infrared Images

Our dataset contains radio images derived from observations with the ASKAP telescope. We use
the Evolutionary Map of Universe pilot survey (EMU-PS; Norris et al., 2021) that covers a sky area
of 270 deg2, achieving an RMS sensitivity of 25 − 35 µJy/beam at a frequency range of 800 to
1088 MHz, centred at 944 MHz (wavelength of 0.37 to 0.28m, centred at 0.32m). The extended
radio galaxies were visually identified by the experts in the 270 deg2 EMU-PS image. At the same
sky locations of radio images, we obtain AllWISE (Cutri et al., 2021) infrared images from the
Wide-field Infrared Survey Explorer’s (WISE; Wright et al., 2010) W1 band that correspond to 3.4
µm wavelength. We create 3-channel RGB images by combining the processed radio and infrared
images. To achieve this, we fill the B and G channels with 8-16 bit and 0-8 bit radio information,
respectively. In contrast, the 8-16 bit infrared information is inserted into the R channel.

2.2 Annotations

Our dataset comprises four types of annotations: the classification labels for extended radio galaxies,
bounding boxes encompassing all components of each radio galaxy, segmentation masks for radio
galaxies, and the positions of infrared host galaxies. The comprehensive methodology for source
identification will be presented in detail by Yew et al. in prep. (2024). Here, we provide a brief
overview of the process. We visually inspected infrared images to determine the infrared host galaxy
associated with each radio source. Following the criteria of Fanaroff and Riley (1974), we classified
the galaxies as FR-I and FR-II. The unreliable classifications, which can either be FR-I or FR-II in
reality, are labelled as FR-x sources. In some cases, barely resolved sources have only one peak
outside the central component, we classify them as R (for "resolved") sources. The radio annotations
for each galaxy are stored as ‘categories’, ‘bbox’, and ‘segmentation’. The positions of the infrared
hosts are stored as ‘keypoints’. The statistics for the train, validation, and test data splits, including
the number of objects in one frame, categories of extended radio galaxies, and the occupied area
of labeled objects, are depicted in Figure 2. Additionally, Table 1 provides a comparison with the
existing MiraBest (Miraghaei and Best, 2017) and Citizen Science RGZ (Wu et al., 2019) datasets.
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1 2 3 4 5
Train   1201 600 127 27 4
Val   255 126 33 5 1
Test   266 122 28 3 1
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Figure 2: The dataset split distributions. Shown are the distributions of extended radio galaxies in
one frame (left), their categories (middle) and the occupied area per galaxy.

Table 2: Bounding box and keypoint detection results on the test set.

Model Params Epochs AP AP50 AP75 APS APM APL

(%) (%) (%) (%) (%) (%)

Gal-DETR 41M 500 22.6 38.1 26.2 16.3 24.8 19.8
Gal-Deformable DETR 40M 100 40.2 52.1 45.9 37.7 39.9 22.2
Gal-DINO-4scale 47M 30 53.7 60.2 58.9 41.5 56.9 35.2

Gal-DETR 41M 500 35.4 37.5 35.3 9.1 60.0 49.6
Gal-Deformable DETR 40M 100 45.0 49.0 45.3 21.5 79.9 76.1
Gal-DINO-4scale 47M 30 48.1 53.4 48.4 17.6 81.4 82.9
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The process of obtaining annotations for our dataset took nearly 1.5 years, involving multiple
discussions over each source, marking the first such dataset in radio astronomy that utilizes such
extensive scientific resources.

3 Experiments

We propose a novel multimodal modelling approach to simultaneously detect radio galaxies and
their corresponding infrared hosts by incorporating keypoint detection in existing object detection
algorithms. Note that the multimodal methods are tailored to specific tasks. Here we have radio
images where galaxies appear larger due to extended emission, while in infrared images, the same
galaxies look like point objects (as depicted in columns 2 and 3 of Figure 1). To the best of our
knowledge, there are no specific models that deal with objects that look completely different in two
image modalities. As a result, we introduce our own approach to multimodal modelling.

We implemented keypoint detection for Gal-DETR (based on DETR; Carion et al., 2020), Gal-
Deformable DETR (based on Deformable DETR Zhu et al., 2021), and Gal-DINO (based on DINO;
Zhang et al., 2022). Specifically, we implemented keypoint detection to the model, augmentations,
and Hungarian matcher and added additional random rotation augmentations during training. We
reduced the learning rate to 5× 10−5 and the number of queries to 10. Similar changes were made
for Gal-Deformable DETR model, where keypoint detection was also implemented in the deformable
attention mechanism. For Gal-DINO model, we made the same changes as for Gal-DETR and
additionally implemented keypoint detection in the de-noising anchor box mechanism. All networks
are trained and evaluated on an Nvidia Tesla P100. Table 2 presents the results of Gal-DETR,
Gal-Deformable DETR, and Gal-DINO for bounding box detection of extended radio galaxies and
keypoint detection for the positions of infrared host galaxies, evaluated using the COCO evaluation
metric. Figure 3 displays RGB images and ground truth annotations (first column), ground truth and
predicted keypoints as circles and triangles over infrared images (second column) and Gal-DINO
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Figure 3: Object detection results: Shown are the processed radio-radio-infrared images and ground
truth annotations (first column), ground truth and Gal-DINO keypoint detections as circles and
triangles over infrared images (second column), Gal-DINO (third column) class and bounding box
predictions over radio images.

bounding box predictions over radio images. All predictions are above the confidence threshold of
0.25. Further details about the dataset and benchmarks are be available in Gupta et al. (2023).

4 Conclusions

We present a multimodal dataset comprising 2,800 images capturing both radio and infrared sky
data, with annotations curated by professional astronomers. The dataset features 4,155 instances of
annotations, including class information of extended radio galaxies, bounding boxes encompassing all
associated components of each radio galaxy, segmentation masks for radio galaxies, and positions of
host galaxies in infrared images. We benchmark various object detection strategies on the dataset and
propose a novel method for simultaneously detecting the extended radio galaxies and the positions
of infrared host galaxies. The availability of our dataset will facilitate the development of machine-
learning methods to detect radio galaxies and infrared hosts in the next generation of radio sky
surveys, enabling the creation of efficient multimodal algorithms with a focus on small objects and
partial annotations.
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Data and Architecture Availability. Our dataset can be downloaded from https://doi.org/10.
25919/btk3-vx79. Network architectures for Gal-DETR, Gal-Deformable DETR and Gal-DINO
can be cloned from http://hdl.handle.net/102.100.100/602494?index=1. This work is
accepted for publication in PASA journal, DOI: https://doi.org/10.1017/pasa.2023.64.
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M. D., Gordon, Y., Gürkan, G., Hale, C., Hopkins, A. M., Huynh, M. T., HyeongHan, K., James
Jee, M., Koribalski, B. S., Lenc, E., Luken, K., Parkinson, D., Prandoni, I., Raja, W., Reiprich,

6

https://doi.org/10.25919/btk3-vx79
https://doi.org/10.25919/btk3-vx79
http://hdl.handle.net/102.100.100/602494?index=1
https://doi.org/10.1017/pasa.2023.64


T. H., Riseley, C. J., Shabala, S. S., Sheil, J. R., Vernstrom, T., Whiting, M. T., Allison, J. R.,
Anderson, C. S., Ball, L., Bell, M., Bunton, J., Galvin, T. J., Gupta, N., Hotan, A., Jacka, C.,
Macgregor, P. J., Mahony, E. K., Maio, U., Moss, V., Pandey-Pommier, M., and Voronkov,
M. A. (2021). The Evolutionary Map of the Universe pilot survey. PASA, 38:e046.

van Haarlem, M. P., Wise, M. W., Gunst, A. W., Heald, G., McKean, J. P., Hessels, J. W. T., de
Bruyn, A. G., Nijboer, R., Swinbank, J., Fallows, R., Brentjens, M., Nelles, A., Beck, R.,
Falcke, H., Fender, R., Hörandel, J., Koopmans, L. V. E., Mann, G., Miley, G., Röttgering, H.,
Stappers, B. W., Wijers, R. A. M. J., Zaroubi, S., van den Akker, M., Alexov, A., Anderson,
J., Anderson, K., van Ardenne, A., Arts, M., Asgekar, A., Avruch, I. M., Batejat, F., Bähren,
L., Bell, M. E., Bell, M. R., van Bemmel, I., Bennema, P., Bentum, M. J., Bernardi, G., Best,
P., Bîrzan, L., Bonafede, A., Boonstra, A. J., Braun, R., Bregman, J., Breitling, F., van de
Brink, R. H., Broderick, J., Broekema, P. C., Brouw, W. N., Brüggen, M., Butcher, H. R., van
Cappellen, W., Ciardi, B., Coenen, T., Conway, J., Coolen, A., Corstanje, A., Damstra, S.,
Davies, O., Deller, A. T., Dettmar, R. J., van Diepen, G., Dijkstra, K., Donker, P., Doorduin,
A., Dromer, J., Drost, M., van Duin, A., Eislöffel, J., van Enst, J., Ferrari, C., Frieswijk, W.,
Gankema, H., Garrett, M. A., de Gasperin, F., Gerbers, M., de Geus, E., Grießmeier, J. M., Grit,
T., Gruppen, P., Hamaker, J. P., Hassall, T., Hoeft, M., Holties, H. A., Horneffer, A., van der
Horst, A., van Houwelingen, A., Huijgen, A., Iacobelli, M., Intema, H., Jackson, N., Jelic, V., de
Jong, A., Juette, E., Kant, D., Karastergiou, A., Koers, A., Kollen, H., Kondratiev, V. I., Kooistra,
E., Koopman, Y., Koster, A., Kuniyoshi, M., Kramer, M., Kuper, G., Lambropoulos, P., Law,
C., van Leeuwen, J., Lemaitre, J., Loose, M., Maat, P., Macario, G., Markoff, S., Masters, J.,
McFadden, R. A., McKay-Bukowski, D., Meijering, H., Meulman, H., Mevius, M., Middelberg,
E., Millenaar, R., Miller-Jones, J. C. A., Mohan, R. N., Mol, J. D., Morawietz, J., Morganti,
R., Mulcahy, D. D., Mulder, E., Munk, H., Nieuwenhuis, L., van Nieuwpoort, R., Noordam,
J. E., Norden, M., Noutsos, A., Offringa, A. R., Olofsson, H., Omar, A., Orrú, E., Overeem, R.,
Paas, H., Pandey-Pommier, M., Pandey, V. N., Pizzo, R., Polatidis, A., Rafferty, D., Rawlings,
S., Reich, W., de Reijer, J. P., Reitsma, J., Renting, G. A., Riemers, P., Rol, E., Romein, J. W.,
Roosjen, J., Ruiter, M., Scaife, A., van der Schaaf, K., Scheers, B., Schellart, P., Schoenmakers,
A., Schoonderbeek, G., Serylak, M., Shulevski, A., Sluman, J., Smirnov, O., Sobey, C., Spreeuw,
H., Steinmetz, M., Sterks, C. G. M., Stiepel, H. J., Stuurwold, K., Tagger, M., Tang, Y., Tasse,
C., Thomas, I., Thoudam, S., Toribio, M. C., van der Tol, B., Usov, O., van Veelen, M., van der
Veen, A. J., ter Veen, S., Verbiest, J. P. W., Vermeulen, R., Vermaas, N., Vocks, C., Vogt, C., de
Vos, M., van der Wal, E., van Weeren, R., Weggemans, H., Weltevrede, P., White, S., Wijnholds,
S. J., Wilhelmsson, T., Wucknitz, O., Yatawatta, S., Zarka, P., Zensus, A., and van Zwieten, J.
(2013). LOFAR: The LOw-Frequency ARray. 556:A2.

Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., Ressler, M. E., Cutri, R. M., Jarrett, T.,
Kirkpatrick, J. D., Padgett, D., McMillan, R. S., Skrutskie, M., Stanford, S. A., Cohen, M.,
Walker, R. G., Mather, J. C., Leisawitz, D., Gautier, III, T. N., McLean, I., Benford, D., Lonsdale,
C. J., Blain, A., Mendez, B., Irace, W. R., Duval, V., Liu, F., Royer, D., Heinrichsen, I., Howard,
J., Shannon, M., Kendall, M., Walsh, A. L., Larsen, M., Cardon, J. G., Schick, S., Schwalm,
M., Abid, M., Fabinsky, B., Naes, L., and Tsai, C.-W. (2010). The Wide-field Infrared Survey
Explorer (WISE): Mission Description and Initial On-orbit Performance. AJ, 140:1868–1881.

Wu, C., Wong, O. I., Rudnick, L., Shabala, S. S., Alger, M. J., Banfield, J. K., Ong, C. S., White,
S. V., Garon, A. F., Norris, R. P., Andernach, H., Tate, J., Lukic, V., Tang, H., Schawinski, K.,
and Diakogiannis, F. I. (2019). Radio Galaxy Zoo: CLARAN - a deep learning classifier for
radio morphologies. MNRAS, 482(1):1211–1230.

Yew et al. in prep. (2024). DRAGANs in EMU-PS survey.
Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L. M., and Shum, H.-Y. (2022). Dino:

Detr with improved denoising anchor boxes for end-to-end object detection. arXiv preprint
arXiv:2203.03605.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2021). Deformable detr: Deformable
transformers for end-to-end object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13149–13158.

7


	Introduction
	The Dataset
	Radio and Infrared Images
	Annotations

	Experiments
	Conclusions

